skip to main content


Title: Numerical Study of Multiple Bio-Inspired Torsionally Hinged Flaps for Passive Flow Control
Covert feathers are a set of self-actuating, passively deployable feathers located on the upper surfaces of wings that augment lift at post-stall angles of attack. Due to these benefits, the study of covert-inspired passive flow control devices is becoming an increasingly active area of research. In this work, we numerically investigate the aerodynamic benefits of torsionally mounting five covert-inspired flaps on the upper surface of a NACA0012 airfoil. Two-dimensional high-fidelity simulations of the flow past the airfoil–flap system at low Re=1000 and a high angle of attack of 20∘ were performed. A parametric study was conducted by varying the flap moment of inertia and torsional hinge stiffness to characterize the aerodynamic performance of this system. Lift improvements as high as 25% were attained. Two regimes of flap dynamics were identified that provided considerable aerodynamic benefits. A detailed investigation of the flow physics of both these regimes was conducted to understand the physical mechanisms by which the passively deployed flaps augmented the lift of the airfoil. In both regimes, the flap was found to act as a barrier in preventing the upstream propagation of reverse flow due to flow separation and trailing edge vortex. The torsional spring and flap inertia yielded additional flap dynamics that further modulated the surrounding flow and associated performance metrics. We discuss some of these fluid–structure interaction effects in this article.  more » « less
Award ID(s):
2029028
NSF-PAR ID:
10344365
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Fluids
Volume:
7
Issue:
2
ISSN:
2311-5521
Page Range / eLocation ID:
44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bio-inspired flow control strategies can provide a new paradigm of efficiency and adaptability to overcome the operational limitations of traditional flow control. This is particularly useful to small-scale uncrewed aerial vehicles since their mission requirements are rapidly expanding, but they are still limited in terms of agility and adaptability when compared to their biological counterparts, birds. One of the flow control strategies that birds implement is the deployment of covert feathers. In this study, we investigate the performance characteristics and flow physics of torsionally hinged covert-inspired flaps mounted on the suction side of a NACA2414 airfoil across different Reynolds numbers, specifically 200,000 and 1,000. These two Reynolds numbers are representative of different avian flight regimes where covert feathers have been observed to deploy during flight, namely cruising and landing/perching. We performed experiments and simulations where we varied the flap location, the hinge stiffness, and the moment of inertia of the flap to investigate the aerodynamic performance and describe the effects of the structural parameters of the flap on the aerodynamic lift improvements. Results of the study show up to 12% lift improvement post-stall for the flapped cases when compared to the flap-less baseline. The post-stall lift improvement is sensitive to the flap’s structural properties and location. For instance, the hinge stiffness controls the mean deflection angle of the flap, which governs the resulting time-averaged lift improvements. The flap moment of inertia, on the other hand, controls the flap dynamics, which in turn controls the flap’s lift-enhancing mechanism and how the flap affects the instantaneous lift. By examining the time-averaged and instantaneous lift measurement, we uncover the mechanisms by which the covert-inspired flap improves lift and highlights similarities and differences across Reynolds numbers. This article highlights the feasibility of using covert-inspired flaps as flow control across different flight missions and speeds.

     
    more » « less
  2. Abstract

    Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles.

     
    more » « less
  3. A bio-inspired, passively deployable flap attached to an airfoil by a torsional spring of fixed stiffness can provide significant lift improvements at post-stall angles of attack. In this work, we describe a hybrid active–passive variant to this purely passive flow control paradigm, where the stiffness of the hinge is actively varied in time to yield passive fluid–structure interaction of greater aerodynamic benefit than the fixed-stiffness case. This hybrid active–passive flow control strategy could potentially be implemented using variable-stiffness actuators with less expense compared with actively prescribing the flap motion. The hinge stiffness is varied via a reinforcement-learning-trained closed-loop feedback controller. A physics-based penalty and a long–short-term training strategy for enabling fast training of the hybrid controller are introduced. The hybrid controller is shown to provide lift improvements as high as 136 % and 85 % with respect to the flapless airfoil and the best fixed-stiffness case, respectively. These lift improvements are achieved due to large-amplitude flap oscillations as the stiffness varies over four orders of magnitude, whose interplay with the flow is analysed in detail. 
    more » « less
  4. We numerically examine the use of Gurney flap to modify the two-dimensional wake dynamics for lift enhancement on NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils. Incompressible flows over the airfoils at different angles of attack are considered at Re = 1000. It is observed that the attachment of the Gurney flap at the trailing edge is able to enhance the lift force experienced by the airfoil appreciably with increase in Gurney flap height. The lift-to-drag ratio of the airfoils is also observed to increase at lower angles of attack. The lift spectra and airfoil wake are examined to reveal the effect of the Gurney flap on the formation of different characteristic wake modes and the associated change in the aerodynamic forces exerted on the airfoils. Based on the observations, we classify the resulting wakes into four distinct modes. The emergence of these modes (steady, 2S, P and 2P) are mapped over a wide range of angles of attack and Gurney flap heights for all four airfoils in consideration. 
    more » « less
  5. Large-eddy simulations (LES) of the fluid flow over a NACA0018 airfoil at AOA =20 degrees angle of attack are performed to investigate the effect of surface morphing oscillations on the aerodynamic performance of the airfoil over a wide range of Reynolds numbers (Re = 5,000 to 500,000). These oscillations are in the form of low amplitude backward (opposite to the airfoil's forward motion) traveling wave actuations on the upper surface of the airfoil. The sharp interface curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. The nondimensional amplitude is a*=0.001 (a*=a/L; a: amplitude, L: chord length of the airfoil) and reduced frequency (f*= fL/U; f is the frequency and U is the freestream velocity) is chosen to match the leading edge vortex shedding frequency. The results of the simulations at the post-stall angle of attack (AOA =20 degrees) show that the lift coefficient increases more than 20% and the drag coefficient decreases more than 40% within the Reynolds number range of Re = 50,000-500,000 for traveling wave actuation of amplitude, a*=0.001, and frequency, f*=8. However, the lift and drag coefficients of the actuated airfoil were similar to the baseline airfoil for Re = 5,000. 
    more » « less