skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph Reconstruction by Discrete Morse Theory
Recovering hidden graph-like structures from potentially noisy data is a fundamental task in modern data analysis. Recently, a persistence-guided discrete Morse-based framework to extract a geometric graph from low-dimensional data has become popular. However, to date, there is very limited theoretical understanding of this framework in terms of graph reconstruction. This paper makes a first step towards closing this gap. Specifically, first, leveraging existing theoretical understanding of persistence-guided discrete Morse cancellation, we provide a simplified version of the existing discrete Morse-based graph reconstruction algorithm. We then introduce a simple and natural noise model and show that the aforementioned framework can correctly reconstruct a graph under this noise model, in the sense that it has the same loop structure as the hidden ground-truth graph, and is also geometrically close. We also provide some experimental results for our simplified graph-reconstruction algorithm.  more » « less
Award ID(s):
1740761
PAR ID:
10064704
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
99
ISSN:
1868-8969
Page Range / eLocation ID:
31:1-31:15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Persistent homology is a tool that can be employed to summarize the shape of data by quantifying homological features. When the data is an object in R d , the (augmented) persistent homology transform ((A)PHT) is a family of persistence diagrams, parameterized by directions in the ambient space. A recent advance in understanding the PHT used the framework of reconstruction in order to find finite a set of directions to faithfully represent the shape, a result that is of both theoretical and practical interest. In this paper, we improve upon this result and present an improved algorithm for graph— and, more generally one-skeleton—reconstruction. The improvement comes in reconstructing the edges, where we use a radial binary (multi-)search. The binary search employed takes advantage of the fact that the edges can be ordered radially with respect to a reference plane, a feature unique to graphs. 
    more » « less
  2. null (Ed.)
    Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one instrument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general O(m^ω) time complexity are not known, where ω < 2.37286 is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with m additions and deletions on a graph with n vertices and edges, the algorithm for 0-dimension runs in O(mlog² n+mlog m) time and the algorithm for 1-dimension runs in O(mlog⁴ n) time. The algorithm for 0-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on 2-manifolds. The algorithm for 1-dimension pairs a negative edge with the earliest positive edge so that a 1-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for 0-dimension to compute the (p-1)-dimensional zigzag persistence for ℝ^p-embedded complexes in O(mlog² n+mlog m+nlog n) time. 
    more » « less
  3. Abstract Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution. These images offer the potential to assemble brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a bottleneck. Several automatic reconstruction algorithms exist, but most focus on single neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain, which combines a hidden Markov state process that encodes neuron geometry with a random field appearance model of neuron fluorescence. ViterBrain utilizes dynamic programming to compute the global maximizer of what we call the most probable neuron path. We applied our algorithm to imperfect image segmentations, and showed that it can follow axons in the presence of noise or nearby neurons. We also provide an interactive framework where users can trace neurons by fixing start and endpoints. ViterBrain is available in our open-source Python package . 
    more » « less
  4. Bellomo, N.; Carrillo, J.A.; Tadmor, E. (Ed.)
    In this work, we build a unifying framework to interpolate between density-driven and geometry-based algorithms for data clustering and, specifically, to connect the mean shift algorithm with spectral clustering at discrete and continuum levels. We seek this connection through the introduction of Fokker–Planck equations on data graphs. Besides introducing new forms of mean shift algorithms on graphs, we provide new theoretical insights on the behavior of the family of diffusion maps in the large sample limit as well as provide new connections between diffusion maps and mean shift dynamics on a fixed graph. Several numerical examples illustrate our theoretical findings and highlight the benefits of interpolating density-driven and geometry-based clustering algorithms. 
    more » « less
  5. Positron emission tomography (PET) is traditionally modeled as discrete systems. Such models may be viewed as piecewise constant approximations of the underlying continuous model for the physical processes and geometry of the PET imaging. Due to the low accuracy of piecewise constant approximations, discrete models introduce an irreducible modeling error which fundamentally limits the quality of reconstructed images. To address this bottleneck, we propose an integral equation model for the PET imaging based on the physical and geometrical considerations, which describes accurately the true coincidences. We show that the proposed integral equation model is equivalent to the existing idealized model in terms of line integrals which is accurate but not suitable for numerical approximation. The proposed model allows us to discretize it using higher accuracy approximation methods. In particular, we discretize the integral equation by using the collocation principle with piecewise linear polynomials. The discretization leads to new ill-conditioned discrete systems for the PET reconstruction, which are further regularized by a novel wavelet-based regularizer. The resulting non-smooth optimization problem is then solved by a preconditioned proximity fixed-point algorithm. Convergence of the algorithm is established for a range of parameters involved in the algorithm. The proposed integral equation model combined with the discretization, regularization, and optimization algorithm provides a new PET image reconstruction method. Numerical results reveal that the proposed model substantially outperforms the conventional discrete model in terms of the consistency to simulated projection data and reconstructed image quality. This indicates that the proposed integral equation model with appropriate discretization and regularizer can significantly reduce modeling errors and suppress noise, which leads to improved image quality and projection data estimation. 
    more » « less