skip to main content

Title: Social Dialogue in the Engineering Classroom: The Effect of National Events on the Political and Social Attitudes of First-Year Engineering Students
This research paper focuses on the effect of recent national events on first-year engineering students’ attitudes about their political identity, social welfare, perspectives of diversity, and approaches to social situations. Engineering classrooms and cultures often focus on mastery of content and technical expertise with little prioritization given to integrating social issues into engineering. This depoliticization (i.e., the removal of social issues) in engineering removes the importance of issues related to including diverse individuals in engineering, working in diverse teams, and developing cultural sensitivity. This study resulted from the shift in the national discourse, during the 2016 presidential election, around diversity and identities in and out of the academy. We were collecting interview data as a part of a larger study on students attitudes about diversity in teams. Because these national events could affect students’ perceptions of our research topic, we changed a portion of our interviews to discuss national events in science, technology, engineering, and mathematics (STEM) classrooms and how students viewed these events in relation to engineering. We interviewed first-year undergraduate students (n = 12) who indicated large differences of attitudes towards diverse individuals, experiences with diverse team members, and/or residing at the intersection of multiple diversity markers. We asked participants during more » the Spring of 2017 to reflect on the personal impact of recent national events and how political discussions have or have not been integrated into their STEM classrooms. During interviews students were asked: 1) Have recent national events impacted you in any way? 2) Have national events been discussed in your STEM classes? 3) If so, what was discussed and how was it discussed? 4) Do these conversations have a place in STEM classes? 5) Are there events you wish were discussed that have not been? Inductive coding was used to analyze interviews and develop themes that were audited for quality by the author team. Two preliminary themes emerged from analysis: political awareness and future-self impact. Students expressed awareness of current political events at the local, national and global levels. They recognized personal and social impacts that these events imposed on close friends, family members, and society. However, students were unsure of how to interpret political dialogue as it relates to policy in engineering disciplines and practices. This uncertainty led students to question their future-selves or careers in engineering. As participants continued to discuss their uncertainty, they expressed a desire to make explicit connections between politics and STEM and their eventual careers in STEM. These findings suggest that depoliticization in the classroom results in engineering students having limited consciousness of how political issues are relevant to their field. This disconnect of political discourse in the classroom gives us a better understanding of how engineering students make sense of current national events in the face of depoliticization. By re-politicising STEM classrooms in a way relevant to students’ futures, educators can better utilize important dialogues to help students understand how their role as engineers influence society and how the experiences of society can influence their practice of engineering. « less
Authors:
; ; ; ; ;
Award ID(s):
1531586
Publication Date:
NSF-PAR ID:
10064803
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing the need to attract and retain the most talented individuals to STEM professions, the National Academies advocate that diversity in STEM must be a national priority. To build a diverse workforce, educators within engineering must continue working to create an inclusive environment to prevent historically underrepresented students from leaving the field. Additionally, previous research provides compelling evidence that diversity among students and faculty is crucially important to the intellectual and social development of all students, and failure to create an inclusive environment for minority students negatively affects both minority and majority students. The dearth of research on the experiences of LGBTQ individuals in engineering is a direct barrier to improving the climate for LGBTQ in our classrooms, departments and profession. Recent studies show that engineering can be a “chilly climate” for LGBTQ individuals where “passing and covering” demands are imposed by a hetero/cis-normative culture within the profession. The unwelcoming climate for LGBTQ individuals in engineering may be a key reason that they are more likely than non-LGBTQ peers to leave engineering. This project builds on the success of a previous exploratory project entitled Promoting LGBTQ Equality in Engineering through Virtual Communities of Practice (VCP), hosted by ASEE (EEC 1539140).more »This project will support engineering departments’ efforts to create LGBTQ-inclusive environments using knowledge generated from the original grant. Our research focuses on understanding how Community of Practice (COP) characteristics develop among STEM faculty who work to increase LGBTQ inclusion; how STEM faculty as part of the VCP develop a change agent identity, and what strategies are effective in reshaping norms and creating LGBTQ-inclusive STEM departments. Therefore, our guiding research question is: How does a Virtual Community of Practice of STEM faculty develop from a group committed to improving the culture for the LGBTQ community? To answer our research question, we designed a qualitative Interpretive Phenomenological Analysis (IPA) study based on in-depth individual interviews. Our study participants are STEM faculty across all ranks and departments. Our sample includes 16 STEM faculty participants. After consulting with IPA experts to establish face validation, we piloted the interview protocol with three experienced qualitative researchers. The focus of this paper presents the results of the pilot study and preliminary themes from a sample of the 16 individual interviews. Most participants discussed the supportive and affirming nature of the community. Interestingly, the supportive culture of the virtual community led to members to translate support to LGBTQ students or colleagues at their home institution. Additionally, the participants spoke in detail about how the group supported their identity development as an educator and as a professional (e.g. engineering identity) in addition to seeking opportunities to combine their advocacy work with their research. Therefore, the supportive culture and safe space to negotiate identity development allows the current VCP to develop. Future work of the group will translate the research findings into practice through the iterative refinement of the community’s advocacy and education efforts including the Safe Zone workshops.« less
  2. Despite increased calls for the need for more diverse engineers and significant efforts to “move the needle,” the composition of students, especially women, earning bachelor’s degrees in engineering has not significantly changed over the past three decades. Prior research by Klotz and colleagues (2014) showed that sustainability as a topic in engineering education is a potentially positive way to increase women’s interest in STEM at the transition from high school to college. Additionally, sustainability has increasingly become a more prevalent topic in engineering as the need for global solutions that address the environmental, social, and economic aspects of sustainability have become more pressing. However, few studies have examined students’ sustainability related career for upper-level engineering students. This time point is a critical one as students are transitioning from college to industry or other careers where they may be positioned to solve some of these pressing problems. In this work, we answer the question, “What differences exist between men and women’s attitudes about sustainability in upper-level engineering courses?” in order to better understand how sustainability topics may promote women’s interest in and desire to address these needs in their future careers. We used pilot data from the CLIMATE survey given tomore »228 junior and senior civil, environmental, and mechanical engineering students at a large East Coast research institution. This survey included questions about students’ career goals, college experiences, beliefs about engineering, and demographic information. The students surveyed included 62 third-year students, 96 fourth-year students, 29 fifth-year students, and one sixth-year student. In order to compare our results of upper-level students’ attitudes about sustainability, we asked the same questions as the previous study focused on first-year engineering students, “Which of these topics, if any, do you hope to directly address in your career?” The list of topics included energy (supply or demand), climate change, environmental degradation, water supply, terrorism and war, opportunities for future generations, food availability, disease, poverty and distribution of resources, and opportunities for women and/or minorities. As the answer to this question was binary, either “Yes,” or “No,” Pearson’s Chi-squared test with Yates’ continuity correction was performed on each topic for this question, comparing men and women’s answers. We found that women are significantly more likely to want to address water supply, food availability, and opportunities for woman and/or minorities in their careers than their male peers. Conversely, men were significantly more likely to want to address energy and terrorism and war in their careers than their female peers. Our results begin to help us understand the particular differences that men and women, even far along in their undergraduate engineering careers, may have in their desire to address certain sustainability outcomes in their careers. This work begins to let us understand certain topics and pathways that may support women in engineering as well as provides comparisons to prior work on early career undergraduate students. Our future work will include looking at particular student experiences in and out of the classroom to understand how these sustainability outcome expectations develop.« less
  3. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pimore »and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up.« less
  4. A recently launched National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive and supportive academy. This contribution will describe three initial interventions within this NRT, namely, an onboarding and orientation event, a career exploration symposium, and a multidisciplinary introductory course. In addition, the assessment of each of these interventions – and the outcomes thereof – will be presented and discussed. Prior to the onboarding and orientation event, trainees received the event’s agenda and checklists summarizing pre- and post-event assignments. Pre-event assignments were designed to familiarize trainees with the NRT, the process of drafting an individual development plan (IDP), and the consent form required for traineeship evaluation purposes. During the event – held online due to COVID-19 – and following introductions, trainees were given the opportunity to ask questions stemming from the pre-event assignments. Subsequently, trainees were introduced to several tools (e.g., checklists as well as sample developmental network maps and mentoring contracts) to guide and track their development and progression through the traineeship. The event concluded with a discussion on topics that also constituted post-event assignments, including registering and preparing for both the career exploration symposium andmore »the multidisciplinary introductory course. Survey data collected after the event indicated that trainees valued the opportunity to learn more about the NRT, ask questions, and meet faculty who expressed a commitment to student success. Shortly thereafter, trainees attended a career exploration symposium and moderated sessions featuring speakers representing careers of interest. Indeed, the symposium was purposely designed to expose trainees to a wide range of career pathways. In addition, practical career tools and skills for STEM professionals were discussed in several breakout sessions. Finally, the symposium ended with a panel discussion comprising four diverse and accomplished recent Ph.D. graduates, who discussed mental health and communication issues prior to answering questions asked by trainees. Trainee responses to a post-symposium survey were also positive as trainees reported the following: an increase in knowledge of career paths and hiring sectors, an appreciation for the diversity of the presenters and career paths, and the attainment of at least one new skill or strategy they felt would aid in their graduate school success. In their first semester in the NRT, trainees take an interdisciplinary course covering the high priority convergent research topic targeted by the traineeship. This course is co-taught by faculty of seven different departments and is composed of four units, each focused on a research question requiring extensive interdisciplinary collaboration to be answered. Teams of at least three core faculty with the cumulative expertise needed to answer each question co-teach each unit, emphasizing concepts that students must understand to address the question at hand. During this course, four multi-departmental interdisciplinary student teams are formed, each focusing on – and conducting a critical review of the literature in – one of the research questions. Indeed, emphasis is placed on providing students with the knowledge and tools to find, critically evaluate, summarize, and present literature on the topic.« less
  5. This complete research paper examines the connection between student beliefs about engineering as a profession, as well as the perceptions of their family and friends, to their reported self-efficacy, career expectations, and grittiness. The student responses examined were obtained from non-calculus ready engineering students at a large land grant institution in the Mid-Atlantic region. The students participated in a well-established program focused on cohort formation, mentorship, professional skill development, and fostering a sense of inclusion and belonging in engineering. The program, consisting of a one-week pre-fall bridge experience and two common courses, was founded in 2012 and has been operating with National Science Foundation (NSF) S-STEM funding since 2016. Students who received S-STEM funded scholarships are required to participate in focus groups, one-on-one interviews, and complete LAESE, MSLQ, and GRIT questionnaires each semester. The researchers applied qualitative coding methods to evaluate student responses from focus groups and one-one-one interviews which were conducted from 2017 to 2019. Questions examined in this paper include: 1) How would you describe an engineer? 2) Please describe what you think an engineer does on a daily basis. 3) What do you think your friends/family think of engineering? 4) What skills or characteristics do you thinkmore »good engineers have? 5) What types of careers do you believe are filled by degree holding engineers? Student responses on the aforementioned questions were related to the self-efficacy, career expectation, and grit values obtained from the LAESE, MSLQ, and GRIT instruments. The nature of this longitudinal study allows the evolution of student responses to also be examined as they matriculate through their education. Additional analysis was performed to identify themes and numerical trends associated with student populations such as, underrepresented minorities, females, and first-generation college students. Results of this research are presented in an effort to further highlight the importance of exposure to STEM fields during an individual’s K-12 education, and express how student perceptions, self-efficacy, GRIT, and career expectations evolve over their undergraduate education.« less