skip to main content


Title: Adaptive and Dynamic Device Authentication Based on Lorenz Chaotic Systems
Chaotic systems such as Lorenz functions have been proposed as cryptographic primitives due to their short-range divergence attributes. They are commonly used in pseudo random number generators, key agreement protocols, and certain classes of encryption procedures. These functions are typically used for their chaotic behavior. However, two of their key properties are often overlooked: (1) their long-range convergence behavior is seldom used, and (2) the static nature of their system parameters is disregarded. The static nature of the system parameters, i.e., core secret, renders these functions vulnerable to a number of attacks when they are deployed in security applications. In this work, we examine these usage gaps and discover compelling security applications for these chaotic systems, in particular, Lorenz chaotic systems. In this paper, we propose an adaptive and dynamic authentication scheme based on discrete Lorenz chaotic systems. The scheme leverages Lorenz function's convergence to achieve a fast and lightweight authentication protocol. We also devise a dynamic parameter configuration technique to enhance the security of the protocol.  more » « less
Award ID(s):
1745808
NSF-PAR ID:
10065466
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
61st International Midwest Symposium on Circuits and Systems (MWSCAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaotic systems, such as Lorenz systems or logistic functions, are known for their rapid divergence property. Even the smallest change in the initial condition will lead to vastly different outputs. This property renders the short-term behavior, i.e., output values, of these systems very hard to predict. Because of this divergence feature, lorenz systems are often used in cryptographic applications, particularly in key agreement protocols and encryptions. Yet, these chaotic systems do exhibit long-term deterministic behaviors - i.e., fit into a known shape over time. In this work, we propose a fast dynamic device authentication scheme that leverages both the divergence and convergence features of the Lorenz systems. In the scheme, a device proves its legitimacy by showing authentication tags belonging to a pre-determined trajectory of a given Lorenz chaotic system. The security of the proposed technique resides in the fact that the short-range function output values are hard for an attacker to predict, but easy for a verifier to validate because the function is deterministic. In addition, in a multi-verifier scenario such as a mobile phone switching among base stations, the device does not have to re-initiate a separate authentication procedure each time. Instead, it just needs to prove the consistency of its chaotic behavior in an iterative manner, making the procedure very efficient in terms of execution time and computing resources. 
    more » « less
  2. Abstract

    Koopman operators are infinite‐dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information valuable for understanding dynamics. However, Koopman operators can have continuous spectra and infinite‐dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data‐driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we compute smoothed approximations of spectral measures associated with general measure‐preserving dynamical systems. We prove explicit convergence theorems for our algorithms (including for general systems that are not measure‐preserving), which can achieve high‐order convergence even for chaotic systems when computing the density of the continuous spectrum and the discrete spectrum. Since our algorithms have error control, ResDMD allows aposteri verification of spectral quantities, Koopman mode decompositions, and learned dictionaries. We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high‐dimensional state space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule with a 20,046‐dimensional state space and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number >105that has a 295,122‐dimensional state space.

     
    more » « less
  3. Efficient simulation of SDEs is essential in many applications, particularly for ergodic systems that demand efficient simulation of both short-time dynamics and large-time statistics. However, locally Lipschitz SDEs often require special treatments such as implicit schemes with small time-steps to accurately simulate the ergodic measures. We introduce a framework to construct inference-based schemes adaptive to large time-steps (ISALT) from data, achieving a reduction in time by several orders of magnitudes. The key is the statistical learning of an approximation to the infinite-dimensional discrete-time flow map. We explore the use of numerical schemes (such as the Euler-Maruyama, the hybrid RK4, and an implicit scheme) to derive informed basis functions, leading to a parameter inference problem. We introduce a scalable algorithm to estimate the parameters by least squares, and we prove the convergence of the estimators as data size increases.

    We test the ISALT on three non-globally Lipschitz SDEs: the 1D double-well potential, a 2D multiscale gradient system, and the 3D stochastic Lorenz equation with a degenerate noise. Numerical results show that ISALT can tolerate time-step magnitudes larger than plain numerical schemes. It reaches optimal accuracy in reproducing the invariant measure when the time-step is medium-large.

     
    more » « less
  4. Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is ~9% lesser than Chua’s. 
    more » « less
  5. Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for digital signature schemes that can satisfy the requirements of delay-aware applications. In this paper, we propose a new digital signature scheme that we refer to as Compact Energy and Delay-aware Authentication (CEDA). In CEDA, signature generation and verification only require a small-constant number of multiplications and Pseudo Random Function (PRF) calls. Therefore, it achieves the lowest end-to-end delay among its counterparts. Our implementation results on an ARM processor and commodity hardware show that CEDA has the most efficient signature generation on both platforms, while offering a fast signature verification. Among its delay-aware counter-parts, CEDA has a smaller private key with a constant-size signature. All these advantages are achieved with the cost of a larger public key. This is a highly favorable trade-0ff for applications wherein the verffier is not memory-limited. We open-sourced our implementation of CEDA to enable its broad testing and adaptation. 
    more » « less