skip to main content


Title: Bayesian Network Structure Optimization for Improved Design Space Mapping for Design Exploration With Materials Design Applications
Modern design problems present both opportunities and challenges, including multifunctionality, high dimensionality, highly nonlinear multimodal responses, and multiple levels or scales. These factors are particularly important in materials design problems and make it difficult for traditional optimization algorithms to search the space effectively, and designer intuition is often insufficient in problems of this complexity. Efficient machine learning algorithms can map complex design spaces to help designers quickly identify promising regions of the design space. In particular, Bayesian network classifiers (BNCs) have been demonstrated as effective tools for top-down design of complex multilevel problems. The most common instantiations of BNCs assume that all design variables are independent. This assumption reduces computational cost, but can limit accuracy especially in engineering problems with interacting factors. The ability to learn representative network structures from data could provide accurate maps of the design space with limited computational expense. Population-based stochastic optimization techniques such as genetic algorithms (GAs) are ideal for optimizing networks because they accommodate discrete, combinatorial, and multimodal problems. Our approach utilizes GAs to identify optimal networks based on limited training sets so that future test points can be classified as accurately and efficiently as possible. This method is first tested on a common machine learning data set, and then demonstrated on a sample design problem of a composite material subjected to a planar sound wave.  more » « less
Award ID(s):
1641078
NSF-PAR ID:
10065535
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Volume:
2B
Page Range / eLocation ID:
V02BT03A004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supervised machine learning techniques have proven to be effective tools for engineering design exploration and optimization applications, in which they are especially useful for mapping promising or feasible regions of the design space. The design space mappings can be used to inform early-stage design exploration, provide reliability assessments, and aid convergence in multiobjective or multilevel problems that require collaborative design teams. However, the accuracy of the mappings can vary based on problem factors such as the number of design variables, presence of discrete variables, multimodality of the underlying response function, and amount of training data available. Additionally, there are several useful machine learning algorithms available, and each has its own set of algorithmic hyperparameters that significantly affect accuracy and computational expense. This work elucidates the use of machine learning for engineering design exploration and optimization problems by investigating the performance of popular classification algorithms on a variety of example engineering optimization problems. The results are synthesized into a set of observations to provide engineers with intuition for applying these techniques to their own problems in the future, as well as recommendations based on problem type to aid engineers in algorithm selection and utilization. 
    more » « less
  2. In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure–property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure–property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure–property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, ranging from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology. 
    more » « less
  3. Abstract

    Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research.

     
    more » « less
  4. Abstract

    In recent years, machine learning (ML) techniques are seen to be promising tools to discover and design novel materials. However, the lack of robust inverse design approaches to identify promising candidate materials without exploring the entire design space causes a fundamental bottleneck. A general‐purpose inverse design approach is presented using generative inverse design networks. This ML‐based inverse design approach uses backpropagation to calculate the analytical gradients of an objective function with respect to design variables. This inverse design approach is capable of overcoming local minima traps by using backpropagation to provide rapid calculations of gradient information and running millions of optimizations with different initial values. Furthermore, an active learning strategy is adopted in the inverse design approach to improve the performance of candidate materials and reduce the amount of training data needed to do so. Compared to passive learning, the active learning strategy is capable of generating better designs and reducing the amount of training data by at least an order‐of‐magnitude in the case study on composite materials. The inverse design approach is compared with conventional gradient‐based topology optimization and gradient‐free genetic algorithms and the pros and cons of each method are discussed when applied to materials discovery and design problems.

     
    more » « less
  5. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less