skip to main content

Title: Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons
Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated metal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was enhanced with the increase of the number of d electrons in the same period with palladium being an exception.
Authors:
; ; ; ; ;
Award ID(s):
1710408
Publication Date:
NSF-PAR ID:
10065734
Journal Name:
Chinese Journal of Chemical Physics
Volume:
31
Issue:
4
Page Range or eLocation-ID:
1-6
ISSN:
1674-0068
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal-metal bonding interactions can engender outstanding magnetic properties in bulk materials and molecules, and examples abound for the transition metals. Extending this paradigm to the lanthanides, herein we report mixed-valence dilanthanide complexes (Cp iPr5 ) 2 Ln 2 I 3 (Ln is Gd, Tb, or Dy; Cp i Pr5 , pentaisopropylcyclopentadienyl), which feature a singly occupied lanthanide-lanthanide σ-bonding orbital of 5 d z 2 parentage, as determined by structural, spectroscopic, and computational analyses. Valence delocalization, wherein the d electron is equally shared by the two lanthanide centers, imparts strong parallel alignment of the σ-bonding and f electrons on both lanthanidesmore »according to Hund’s rules. The combination of a well-isolated high-spin ground state and large magnetic anisotropy in (Cp iPr5 ) 2 Dy 2 I 3 gives rise to an enormous coercive magnetic field with a lower bound of 14 tesla at temperatures as high as 60 kelvin.« less
  2. Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5 d -electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstratemore »room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO 3 . We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO 3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO 3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO 3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 d transition-metal oxide thin films can be an ideal building block for low-power spintronics.« less
  3. A series of complexes with low-energy Fe II to Ti IV metal-to-metal charge-transfer (MMCT) transitions, Cp 2 Ti(C 2 Fc) 2 , Cp* 2 Ti(C 2 Fc) 2 , and MeOOC Cp 2 Ti(C 2 Fc) 2 , was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fitmore »to the Catalán solvent parameters – solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) – was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350–450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp 2 Ti(C 2 Fc) 2 CuI, where CuI is coordinated between the alkynes, retains its Fe II to Ti IV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp 2 Ti(C 2 Fc) 2 CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode.« less
  4. Metal nanoparticles have received substantial attention in the past decades for their applications in numerous areas, including medicine, catalysis, energy, and the environment. Despite these applications, the fundamentals of adsorption on nanoparticle surfaces as a function of nanoparticle size, shape, metal composition, and type of adsorbate are yet to be found. Herein, we introduce the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition, and different adsorbates by combining first principles calculations with machine learning. Our model fits a large number of data and accurately predicts adsorption trends on nanoparticles (both monometallic and alloy) that havemore »not been previously seen. In addition to its application power, the model is simple and uses tabulated and rapidly calculated data for metals and adsorbates. We connect adsorption with stability behavior of nanoparticles, thus advancing the design of optimal nanoparticles for applications of interest, such as catalysis.« less
  5. Access to well-defined, model-like, non-noble metal intermetallic compound nanomaterials (<10 nm) with phase pure bulk, bulk-like 1st-atomic-layer surface composition, and unique electronic and surface chemical properties is critical for the fields of catalysis, electronics, and sensor development. Non-noble metal intermetallic compounds are compositionally ordered solid compounds composed of transition metals and semimetals or post-transition metals. Their synthesis as model-like high-surface-area supported nanoparticles is challenging due to the elevated reactivity of the constituent elements and their interaction with the support material. In this study, we have developed a systematic understanding of the fundamental phenomena that control the synthesis of these materialsmore »such that phase pure bulk nanoparticles (<10 nm) may be produced with bulk-like surface terminations. The effects of the precursor and support choice, chemical potential of H 2 , reduction temperature, and annealing procedures were investigated to understand the fundamental kinetics of particle formation and interactions that dictate phase purity and stability and 1st-atomic-layer surface composition. The understanding developed may serve as a foundation for further developing advanced synthesis procedures for well-defined nanoparticles with increasing compositional complexity.« less