skip to main content

Title: Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis
Metal nanoparticles have received substantial attention in the past decades for their applications in numerous areas, including medicine, catalysis, energy, and the environment. Despite these applications, the fundamentals of adsorption on nanoparticle surfaces as a function of nanoparticle size, shape, metal composition, and type of adsorbate are yet to be found. Herein, we introduce the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition, and different adsorbates by combining first principles calculations with machine learning. Our model fits a large number of data and accurately predicts adsorption trends on nanoparticles (both monometallic and alloy) that have not been previously seen. In addition to its application power, the model is simple and uses tabulated and rapidly calculated data for metals and adsorbates. We connect adsorption with stability behavior of nanoparticles, thus advancing the design of optimal nanoparticles for applications of interest, such as catalysis.
Authors:
; ;
Award ID(s):
1634880
Publication Date:
NSF-PAR ID:
10114082
Journal Name:
Science Advances
Volume:
5
Issue:
9
Page Range or eLocation-ID:
eaax5101
ISSN:
2375-2548
Sponsoring Org:
National Science Foundation
More Like this
  1. Bicontinuous particle-stabilized emulsions (bijels) are networks of interpenetrating oil/water channels with applications in catalysis, tissue engineering, and energy storage. Bijels can be generated by arresting solvent transfer induced phase separation (STrIPS) via interfacial jamming of nanoparticles. However, until now, STrIPS bijels have only been formed with silica nanoparticles of low surface charge densities, limiting their potential applications in catalysis and fluid transport. Here, we show how strongly charged silica nanoparticles can stabilize bijels. To this end, we carry out a systematic study employing dynamic light scattering, zeta potential, acid/base titrations, turbidimetry, surface tension, and confocal microscopy. We find that moderating the adsorption of oppositely charged surfactants on the particles is crucial to facilitate particle dispersibility in the bijel casting mixture and bijel stabilization. Our results potentially introduce a general understanding for bijel fabrication with different inorganic nanoparticle materials of variable charge density.
  2. Abstract

    Adsorption plays vital roles in many processes including catalysis, sensing, and nanomaterials design. However, quantifying molecular adsorption, especially at the nanoscale, is challenging, hindering the exploration of its utilization on nanomaterials that possess heterogeneity across different length scales. Here we map the adsorption of nonfluorescent small molecule/ion and polymer ligands on gold nanoparticles of various morphologies in situ under ambient solution conditions, in which these ligands are critical for the particles’ physiochemical properties. We differentiate at nanometer resolution their adsorption affinities among different sites on the same nanoparticle and uncover positive/negative adsorption cooperativity, both essential for understanding adsorbate-surface interactions. Considering the surface density of adsorbed ligands, we further discover crossover behaviors of ligand adsorption between different particle facets, leading to a strategy and its implementation in facet-controlled synthesis of colloidal metal nanoparticles by merely tuning the concentration of a single ligand.

  3. A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state modelmore »that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption.« less
  4. Supported lipid bilayers (SLBs) have proven to be valuable model systems for studying the interactions of proteins, peptides, and nanoparticles with biological membranes. The physicochemical properties (e.g., topography, coating) of the solid substrate may affect the formation and properties of supported phospholipid bilayers, and thus, subsequent interactions with biomolecules or nanoparticles. Here, we examine the influence of support coating (SiO2 vs Si3N4) and topography [sensors with embedded vs protruding gold nanodisks for nanoplasmonic sensing (NPS)] on the formation and subsequent interactions of supported phospholipid bilayers with the model protein cytochrome c and with cationic polymer-wrapped quantum dots using quartz crystal microbalance with dissipation monitoring and NPS techniques. The specific protein and nanoparticle were chosen because they differ in the degree to which they penetrate the bilayer. We find that bilayer formation and subsequent non-penetrative association with cytochrome c were not significantly influenced by substrate composition or topography. In contrast, the interactions of nanoparticles with SLBs depended on the substrate composition. The substrate-dependence of nanoparticle adsorption is attributed to the more negative zeta-potential of the bilayers supported by the silica vs the silicon nitride substrate and to the penetration of the cationic polymer wrapping the nanoparticles into the bilayer. Our resultsmore »indicate that the degree to which nanoscale analytes interact with SLBs may be influenced by the underlying substrate material.« less
  5. Gold nanoparticles (AuNPs) are now being used in such areas as diagnostics, drug delivery, and biological sensing. In these applications, AuNPs are frequently exposed to biological fluids. These fluids contain many different proteins, any of which may interfere with the intended function of the nanoparticle. In this work, we examine the thermodynamic consequences of proteinnanoparticle binding using a combined spectroscopic and calorimetric approach. We monitored binding using UV-Vis spectroscopy, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Six proteins were studied based on their differing chemical properties, and both 15 nm and 30 nm citrate-coated AuNPs were investigated. We interpreted the UV-Vis data using two different models: the commonly-used Langmuir isotherm model and a more complex mass transport model. Both models can be used to determine Kd values for the 30 nm AuNP data; however, the mass transport model is more appropriate for 15 nm AuNPs. This is because, when fitting the Langmuir model, it is commonly assumed that most proteins are not surface-associated, and this assumption fails for 15 nm AuNPs. The DSC thermograms show two transitions for a globular protein adsorbed to a 15 nm AuNP: one high-temperature transition that is similar to global protein unfolding (68more »C), and one low-temperature transition that may correspond to unfolding at the surface (56 C). Conversely, ITC experiments show no net heat of adsorption for GB3, even at high protein/AuNP concentrations. Together, the spectroscopic and calorimetric data suggest a complex, multi-step process for protein-nanoparticle adsorption. Moreover, for the proteins studied, both AuNP curvature and protein chemistry contribute to protein adsorption, with proteins generally binding more weakly to the larger nanoparticles. In the future, this work may lead to principles for improving the design of AuNPbased therapeutics and sensors.« less