skip to main content


Title: Using technology in representing practice to support preservice teachers’ quality questioning: The roles of noticing in improving practice
Calls for a “practice-based” approach to teacher education have become common in scholarship on teacher education, and preservice-teaching (PST) mathematics programs are increasingly heeding this call. Practice-based teacher education (PBTE) moves beyond standard approaches to teacher education in which PSTs learn about teaching in ways they are then expected to apply in practice and toward an approach that provides PSTs opportunities to gain experience in particular core practices in ways that approximate enactment in the classroom. A growing body of research suggests that teachers’ responses, including the questions they ask, can help students’ develop content knowledge and proficiency in mathematics and science practices in the classroom. However, despite evidence that PSTs can notice students’ thinking in various activities in their preparation programs, it is not clear that they are sufficiently well-prepared to propose quality responses before entering the classroom. In this paper, we describe two different approaches that we have taken to provide support for quality teacher questioning in the LessonSketch environment. From our results, we develop a hypothesis that a pedagogical approach that primes novices to notice model questioning can support a stance of focusing on the substance of students’ thinking and probing rather than guiding students’ thinking in their proposed questions.  more » « less
Award ID(s):
1712220
NSF-PAR ID:
10065776
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of technology and teacher education
Volume:
26
Issue:
1
ISSN:
1059-7069
Page Range / eLocation ID:
127-147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in. 
    more » « less
  2. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  3. Abstract

    The practice of teacher noticing students' mathematical thinking often includes three interrelated components: attending to students' strategies, interpreting students' understandings, and deciding how to respond on the basis of students' understanding. This practice gains complexity in technology‐mediated environments (i.e., using technology‐enhanced math tasks) because it requires attending to and interpreting students' engagement with technology. Current frameworks implicitly assume the practice includes noticing the ways students use tools (including technology tools) in their work, but do not explicitly highlight the role of the tool. While research has shown that using these frameworks supports preservice secondary mathematics teachers (PSTs) developing noticing practices, it has also shown that PSTs largely overlook students' technology engagement when they are working on technology‐enhanced tasks (Journal for Research in Mathematics Education, 2010; 41(2):169–202). In this article, we describe our adaptation of Jacobs et al.'s framework for teacher noticing student mathematical thinking to include a focus on making students' technology‐tool engagement explicit when noticing in technology‐mediated environments, the Noticing in Technology‐Mediated Environments (NITE) framework. We describe the theoretical foundations of the framework, provide a video case example, and then illustrate how the framework can be used by mathematics teacher educators to support PSTs' noticing when students are working in technology‐mediated environments.

     
    more » « less
  4. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less
  5. Abstract

    Questioning is a critical instructional strategy for teachers to support students’ knowledge construction in inquiry-oriented science teaching. Existing literature has delineated the characteristics and functions of effective questioning strategies. However, attention has been primarily cast on the format of questioning like open-ended questions in prompting student interactions or class discourses, but not much on science content embedded in questions and how they guide students toward learning objectives. Insufficient attention has been cast on the connection between a chain of questions used by a teacher in the attempt to scaffold student conceptual understanding, especially when students encounter difficulties. Furthermore, existing methods of question analysis from massive information of class discourses are unwieldy for large-scale analysis. Science teacher education needs an instrument to assess a large sample of Pre-service Teachers’ (PST) competencies of not only asking open-ended questions to solicit students’ thoughts but also analyzing the information collected from students’ responses and determining the logical of consecutive responses. This study presented such an instrument for analyzing patterns of 60 PST’s questioning chains from when they taught a science lesson during a methods course and another lesson during student teaching. Cohen’s Kappa was conducted to examine the inter-rater reliability of the coders. The PST’s orientations from the two videos were determined and the correlation between them was compared to test the validity of this instrument. Consideration of the data from this instrument identified patterns of the PSTs’ science teaching, discussed the importance of guiding questions in inquiry teaching, and suggested quantitative studies with this instrument.

     
    more » « less