This paper presents the design, modeling, analysis, and experimental results of a novel bipedal robotic system that utilizes two interconnected single degree-of-freedom (DOF) leg mechanisms to produce stable forward locomotion and steering. The single DOF leg is actuated via a Reuleaux triangle cam-follower mechanism to produce a constant body height foot trajectory. Kinematic analysis and dimension selection of the Reuleaux triangle mechanism is conducted first to generate the desired step height and step length. Leg sequencing is then designed to allow the robot to maintain a constant body height and forward walking velocity. Dynamic simulations and experiments are conducted to evaluate the walking and steering performance. The results show that the robot is able to control its body orientation, maintain a constant body height, and achieve quasi-static locomotion stability.
more »
« less
An Articulated Closed Kinematic Chain Planar Robotic Leg for High-Speed Locomotion
Abstract This paper presents the design, dynamic modeling, and integration of a single degree of freedom (DOF) robotic leg mechanism intended for tailed quadruped locomotion. The design employs a lightweight six-bar linkage that couples the hip and knee flexion/extension joints mechanically, requiring only a single degree of actuation. By utilizing a parametric optimization, a unique topological arrangement is achieved that results in a foot trajectory that is well suited for dynamic gaits including trot-running, bounding, and galloping. Furthermore, a singular perturbation is introduced to the hybrid dynamic framework to address the lack of robust methods that provide a solution for the differential algebraic equations (DAEs) that characterize closed kinematic chain (CKC) structures as well as the hybrid nature of legged locomotion. By approximating the system dynamics as ordinary differential equations (ODEs) and asymptotically driving the constraint error to zero, CKCs can adopt existing real-time model-based/model-predictive/hybrid-control frameworks. The dynamic model is verified through simulations and the foot trajectory was experimentally validated. Preliminary open-loop planar running demonstrated speeds up to 3.2 m/s. These advantages, accompanied by low-integration costs, warrant this leg as a robust, effective platform for future tailed quadruped research.
more »
« less
- Award ID(s):
- 1906727
- PAR ID:
- 10155493
- Date Published:
- Journal Name:
- Journal of Mechanisms and Robotics
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 1942-4302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents the design, modeling, analysis, and experimental results of a bipedal robotic system that utilizes two interconnected single degree-of-freedom leg mechanisms to produce stable forward locomotion and steering. The legs are composed of double four-bar mechanism connected in series that maintain a parallel orientation of a flat foot, relative to the biped body, that is actuated via a Reuleaux triangle cam-follower system to produce a desirable foot trajectory. The mechanical design of the leg mechanism is presented followed by kinematic analysis of the cam-follower system to select the optimal foot trajectory and synthesize the mechanism dimensions and produce a desired step height and step length. The concept of leg sequencing is then presented to maintain a constant body height above the ground and a constant forward walking velocity. Experimental results using an integrated prototype indicate that the proposed biped robot is capable of maintaining quasi-static stability during locomotion, maintaining a constant robot body height, maintaining a constant body orientation, move forward with a constant maximum velocity of 27.4 cm/s, and steer.more » « less
-
The traditional locomotion paradigm of quadruped robots is to use dexterous (multi degrees of freedom) legs and dynamically optimized footholds to balance the body and achieve stable locomotion. With the introduction of a robotic tail, a new locomotion paradigm becomes possible as the balancing is achieved by the tail and the legs are only responsible for propulsion. Since the burden on the leg is reduced, leg complexity can be also reduced. This paper explores this new paradigm by tackling the dynamic locomotion control problem of a reduced complexity quadruped (RCQ) with a pendulum tail. For this specific control task, a new control strategy is proposed in a manner that the legs are planned to execute the open-loop gait motion in advance, while the tail is controlled in a closed-loop to prepare the quadruped body in the desired orientation. With these two parts working cooperatively, the quadruped achieves dynamic locomotion. Partial feedback linearization (PFL) controller is used for the closed-loop tail control. Pronking, bounding, and maneuvering are tested to evaluate the controller’s performance. The results validate the proposed controller and demonstrate the feasibility and potential of the new locomotion paradigm.more » « less
-
We propose a method to generate actuation plans for a reduced order, dynamic model of bipedal running. This method explicitly enforces robustness to ground uncertainty. The plan generated is not a fixed body trajectory that is aggressively stabilized: instead, the plan interacts with the passive dynamics of the reduced order model to create emergent robustness. The goal is to create plans for legged robots that will be robust to imperfect perception of the environment, and to work with dynamics that are too complex to optimize in real-time. Working within this dynamic model of legged locomotion, we optimize a set of disturbance cases together with the nominal case, all with linked inputs. The input linking is nontrivial due to the hybrid dynamics of the running model but our solution is effective and has analytical gradients. The optimization procedure proposed is significantly slower than a standard trajectory optimization, but results in robust gaits that reject disturbances extremely effectively without any replanning required.more » « less
-
null (Ed.)We propose a method to generate actuation plans for a reduced order, dynamic model of bipedal running. This method explicitly enforces robustness to ground uncertainty. The plan generated is not a fixed body trajectory that is aggressively stabilized: instead, the plan interacts with the passive dynamics of the reduced order model to create emergent robustness. The goal is to create plans for legged robots that will be robust to imperfect perception of the environment, and to work with dynamics that are too complex to optimize in real-time. Working within this dynamic model of legged locomotion, we optimize a set of disturbance cases together with the nominal case, all with linked inputs. The input linking is nontrivial due to the hybrid dynamics of the running model but our solution is effective and has analytical gradients. The optimization procedure proposed is significantly slower than a standard trajectory optimization, but results in robust gaits that reject disturbances extremely effectively without any replanning required.more » « less