skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Advanced electricity load forecasting combining electricity and transportation network
Abstract: Load forecasting plays a very crucial role in many aspects of electric power systems including the economic and social benefits. Previously, there have been many studies involving load forecasting using time series approach, including weather-load relationships. In one such approach to predict load, this paper investigates through different structures that aim to relate various daily parameters. These parameters include temperature, humidity and solar radiation that comprises the weather data. Along with natural phenomenon as weather, physical aspects such as traffic flow are also considered. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. Electricity consumption data is collected from the City of Tallahassee utilities. Traffic count is provided by the Florida Department of Transportation. Moreover, the weather data is obtained from Tallahassee regional Airport weather station. This paper aims to study and establish a cause and effect relationship between the mentioned variables using different causality models and to forecast load based on the external variables. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered.  more » « less
Award ID(s):
1640587
PAR ID:
10065862
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2017 North American Power Symposium (NAPS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate and efficient power demand forecasting in urban settings is essential for making decisions related to planning, managing and operations in electricity supply. This task, however, is complicated due to many sources of uncertainty such as due to the variation in weather conditions and household or other needs that influence the inherent stochastic and nonlinear characteristics of electricity demand. Due to the modeling flexibility and computational efficiency afforded by it, a Gaussian process model is employed in this study for energy demand prediction as a function of temperature. A Gaussian process model is a Bayesian non-parametric regression method that models data using a joint Gaussian distribution with mean and covariance functions. The selected mean function is modeled as a polynomial function of temperature, whereas the covariance function is appropriately selected to reflect the actual data patterns. We employ real data sets of daily temperature and electricity demand from Austin, Texas, USA to assess the effectiveness of the proposed method for load forecasting. The accuracy of the model prediction is evaluated using metrics such as mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and 95% confidence interval (95% CI). A numerical study undertaken demonstrates that the proposed method has promise for energy demand prediction. 
    more » « less
  2. Predicting extreme events in chaotic systems, characterized by rare but intensely fluctuating properties, is of great importance due to their impact on the performance and reliability of a wide range of systems. Some examples include weather forecasting, traffic management, power grid operations, and financial market analysis, to name a few. Methods of increasing sophistication have been developed to forecast events in these systems. However, the boundaries that define the maximum accuracy of forecasting tools are still largely unexplored from a theoretical standpoint. Here, we address the question: What is the minimum possible error in the prediction of extreme events in complex, chaotic systems? We derive the minimum probability of error in extreme event forecasting along with its information-theoretic lower and upper bounds. These bounds are universal for a given problem, in that they hold regardless of the modeling approach for extreme event prediction: from traditional linear regressions to sophisticated neural network models. The limits in predictability are obtained from the cost-sensitive Fano’s and Hellman’s inequalities using the Rényi entropy. The results are also connected to Takens’ embedding theorem using the information can’t hurt inequality. Finally, the probability of error for a forecasting model is decomposed into three sources: uncertainty in the initial conditions, hidden variables, and suboptimal modeling assumptions. The latter allows us to assess whether prediction models are operating near their maximum theoretical performance or if further improvements are possible. The bounds are applied to the prediction of extreme events in the Rössler system and the Kolmogorov flow. 
    more » « less
  3. null (Ed.)
    The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques. 
    more » « less
  4. The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques. 
    more » « less
  5. Electric load forecasting refers to forecasting the electricity demand at aggregated levels. Utilities use the predictions of this technique to keep a balance between electricity generation and consumption at each time and make accurate decision for power system planning, operations, and maintenance, etc. Based on prediction time horizon, electric load forecasting is classified to very short-term, short-term, medium-term, and long-term. In this paper, a multiple output Gaussian processes with multiple kernel learning is proposed to predict short-term electric load forecasting (predicting 24 load values for the next day) based on load, temperature, and dew point values of previous days. Mean absolute percentage error (MAPE) is used as a measure of prediction accuracy. By comparing MAPE values of the proposed method with the persistence method, it can been seen that the proposed method improves the persistence method MAPE up to 4%. 
    more » « less