skip to main content


Title: Advanced electricity load forecasting combining electricity and transportation network
Abstract: Load forecasting plays a very crucial role in many aspects of electric power systems including the economic and social benefits. Previously, there have been many studies involving load forecasting using time series approach, including weather-load relationships. In one such approach to predict load, this paper investigates through different structures that aim to relate various daily parameters. These parameters include temperature, humidity and solar radiation that comprises the weather data. Along with natural phenomenon as weather, physical aspects such as traffic flow are also considered. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. Electricity consumption data is collected from the City of Tallahassee utilities. Traffic count is provided by the Florida Department of Transportation. Moreover, the weather data is obtained from Tallahassee regional Airport weather station. This paper aims to study and establish a cause and effect relationship between the mentioned variables using different causality models and to forecast load based on the external variables. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered.  more » « less
Award ID(s):
1640587
NSF-PAR ID:
10065862
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2017 North American Power Symposium (NAPS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques. 
    more » « less
  2. The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques. 
    more » « less
  3. Modeling corrosion growth for complex systems such as the oil refinery system is a major challenge since the corrosion process of oil and gas pipelines are inherently stochastic and depends on many factors including exposures to environmental conditions, operating conditions, and electrochemical reactions. Moreover, the number of sensors is usually limited, and sensor data are incomplete and scattering, which hinders the capability of capturing the corrosion growth behaviors. Therefore, this paper proposes Multi-sensor Corrosion Growth Model with Latent Variables to predict the corrosion growth process in oil refinery piping. The proposed model is a combination of the hierarchical clustering algorithm and the vector autoregression (VAR) model. The clustering algorithm aims to find the hidden (i.e., latent) data clusters of the measured time series data, from which the time series from the same cluster will be included in the VAR model to predict the corrosion depth from multiple sensors. The model can capture the relationship between sensor time series data and identify latent variables. A real case study of an oil refinery system, in which in-line inspection (ILI) data were collected, was utilized to validate model. Regarding corrosion growth prediction, the paper compared the prediction accuracy of VAR model with other three forms of power law model, which is widely accepted to expect the time-dependent depth of corrosion such as power function (PF), PF with initiation time of corrosion (PFIT), and PF with initiation time of corrosion and covariates (PFCOV). The results showed that VAR model has the lowest prediction error based on the mean absolute percentage error (MAPE) evaluation for test data. Finally, the proposed model is believed to be useful for dealing with a complex system that has a variety of corrosion growth behaviors, such as the oil refinery system, as well as it can be applied in other real-time applications. 
    more » « less
  4. Accurate and efficient power demand forecasting in urban settings is essential for making decisions related to planning, managing and operations in electricity supply. This task, however, is complicated due to many sources of uncertainty such as due to the variation in weather conditions and household or other needs that influence the inherent stochastic and nonlinear characteristics of electricity demand. Due to the modeling flexibility and computational efficiency afforded by it, a Gaussian process model is employed in this study for energy demand prediction as a function of temperature. A Gaussian process model is a Bayesian non-parametric regression method that models data using a joint Gaussian distribution with mean and covariance functions. The selected mean function is modeled as a polynomial function of temperature, whereas the covariance function is appropriately selected to reflect the actual data patterns. We employ real data sets of daily temperature and electricity demand from Austin, Texas, USA to assess the effectiveness of the proposed method for load forecasting. The accuracy of the model prediction is evaluated using metrics such as mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and 95% confidence interval (95% CI). A numerical study undertaken demonstrates that the proposed method has promise for energy demand prediction. 
    more » « less
  5. Abstract

    Fisheries management is dominated by the need to forecast catch and abundance of commercially and ecologically important species. The influence of spatial information and environmental factors on forecasting error is not often considered. I propose a forecasting method called spatiotemporally explicit model averaging (STEMA) to combine spatial and temporal information through model averaging. I examine the performance of STEMA against two popular forecasting models and a modern spatial prediction model: the autoregressive integrated moving averages with explanatory variables (ARIMAX) model, the Bayesian hierarchical model, and the varying coefficient model. I focus on applying the methods to four species of Alaskan groundfish for which catch data are available. My method reduces forecasting errors significantly for most of the tested models when compared to ARIMAX, Bayesian, and varying coefficient methods. I also consider the effect of sea surface temperature (SST) on the forecasting of catch, as multiple studies reveal a potential influence of water temperature on the survival and growth of juvenile groundfish. For most of the preferred models, inclusion of SST in the model improved forecasting of catch. It is advisable to consider both spatial information and relevant environmental factors in forecasting models to obtain more accurate projections of population abundance. The STEMA method is capable of accounting for spatial information in forecasting and can be applied to various types of data because of its flexible varying coefficient model structure. It is therefore a suitable forecasting method for application to many fields including ecology, epidemiology, and climatology.

     
    more » « less