skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1640587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A novel multivariate deep causal network model (MDCN) is proposed in this paper, which combines the theory of conditional variance and deep neural networks to identify the cause-effect relationship between different interdependent time-series. The MCDN validation is conducted by a double step approach. The self validation is performed by information theory - based metrics, and the cross validation is achieved by a foresting application that combines the actual interdependent electricity, transportation, and weather datasets in the City of Tallahassee, Florida, USA. 
    more » « less
  2. Florida's emergency relief operations were significantly affected by recent hurricanes such as Hermine and Irma that caused massive roadway and power system distributions. During these recent devastating hurricanes, the problems associated with providing accessibility and safety became even more challenging, especially for those vulnerable communities and disadvantaged segments of the society, such as aging populations were considered - that is, those who need and benefit from the emergency services the most. This complexity is magnified in states like Florida, considering the diverse physical, cognitive, economic and demographic variation of its population. As such, with a major focus on real-life data on roadway closures and power outages for the Hurricane Hermine, combined resilience (co-resilience) of emergency response facilities in the City of Tallahassee, the capital of Florida, was extensively studied based on the (a) temporal reconstruction of the reported power outages and roadway closures, and (b) development of co-resilience metrics to identify and visually map the most affected power system feeders and transportation network locations. Results show those regions with reduced emergency response facility accessibility, and those power lines and roadways under a disruption risk after Hermine hit Tallahassee. 
    more » « less
  3. Natural disasters have devastating effects on the infrastructure and disrupt every aspect of daily life in the regions they hit. To alleviate problems caused by these disasters, first an impact assessment is needed. As such, this paper focuses on a two-step methodology to identify the impact of Hurricane Hermine on the City of Tallahassee, the capital of Florida. The regional and socioeconomic variations in the Hermine’s impact were studied via spatially and statistically analyzing power outages. First step includes a spatial analysis to illustrate the magnitude of customers affected by power outages together with a clustering analysis. This step aims to determine whether the customers affected from outages are clustered or not. Second step involves a Bayesian spatial autoregressive model in order to identify the effects of several demographic-, socioeconomic-, and transportation-related variables on the magnitude of customers affected by power outages. Results showed that customers affected by outages are spatially clustered at particular regions rather than being dispersed. This indicates the need to pinpoint such vulnerable locations and develop strategies to reduce hurricane-induced disruptions. Furthermore, the increase in the magnitude of affected customers was found to be associated with several variables such as the power network and total generated trips as well as the demographic factors. The information gained from the findings of this study can assist emergency officials in identifying critical and/or less resilient regions, and determining those demographic and socioeconomic groups which were relatively more affected by the consequences of hurricanes than others. 
    more » « less
  4. Abstract: Load forecasting plays a very crucial role in many aspects of electric power systems including the economic and social benefits. Previously, there have been many studies involving load forecasting using time series approach, including weather-load relationships. In one such approach to predict load, this paper investigates through different structures that aim to relate various daily parameters. These parameters include temperature, humidity and solar radiation that comprises the weather data. Along with natural phenomenon as weather, physical aspects such as traffic flow are also considered. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. Electricity consumption data is collected from the City of Tallahassee utilities. Traffic count is provided by the Florida Department of Transportation. Moreover, the weather data is obtained from Tallahassee regional Airport weather station. This paper aims to study and establish a cause and effect relationship between the mentioned variables using different causality models and to forecast load based on the external variables. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. 
    more » « less