skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in long‐term water quality of Baltimore streams are associated with both gray and green infrastructure
<italic>Abstract</italic> The steadily rising global urban population has placed substantial strain on urban water quality, and this strain is projected to increase for the foreseeable future. Considerable attention has been given to the hydrological and physico‐chemical effects of urbanization on stream ecosystems. However, due to the relative infancy of the field of urban ecology, long‐term water quality analyses in urban streams are sparse. Using a 15‐yr stream chemistry monitoring record from Baltimore, Maryland, we quantified long‐term trends in nitrate, phosphate, total nitrogen, total phosphorus, chloride, and sulfate export at several sites along a rural–urban gradient. We found no significant change in solute export at most sites, although we did find specific patterns of interest for certain solutes. For example, nitrogen export declined at the most headwater urban site, while phosphorus export declined at the most downstream urban site. Coupling long‐term monitoring with data on gray and green infrastructure management throughout the landscape, we established relationships between solute export at the most downstream urban monitoring site and sanitary sewer overflows (SSOs), best management practice (BMP) implementation, and road salt application rates. Phosphorus export was correlated with BMP implementation in the watershed, whereas nitrogen export was related to SSOs. Despite highly urbanized watersheds, water quality does not appear to be declining at most of these sites, suggesting that current management may have limited further impairment. Results of our study suggest that both gray and green infrastructure are key for maintaining and improving water quality in this highly urbanized watershed.  more » « less
Award ID(s):
1637661 1855277
PAR ID:
10065960
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
64
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Denitrification potential and a series of ancillary variables (inorganic nitrogen concentrations, moisture content, organic matter content, microbial biomass carbon and nitrogen content, potential net nitrogen mineralization and nitrification, microbial respiration, root biomass) has been measured in riparian zone soils and stream geomorphic features by a series of undergraduate and graduate student researchers as part of the Baltimore Ecosystem Study since the early 2000s. These studies often center on the series of sites where there has been long-term monitoring (since 2000) of riparian water tables and groundwater chemistry along four first or second order steams in and around the Gwynns Falls watershed in Baltimore City and County, MD (https://doi.org/10.6073/pasta/f7721ec5a4fab5b031f8056824e07e7d). One site is in the completely forested Pond Branch catchment that serves as a "reference" study area for the Baltimore LTER (BES). Two sites (Glyndon, Gwynbrook) are in suburban areas of the watershed; one just upstream from the Glyndon BES long-term stream monitoring site in the headwaters of the Gwynns Falls, and one along a tributary that enters the Gwynns Falls just above the Gwynnbrook BES long-term stream monitoring site farther downstream. The final, urban site (Cahill) is along a tributary to the Gwynns Falls in Leakin Park in the urban core of the watershed. Other sites were used in different studies as described in the publications associated with each study. The different studies also varied in just which ancillary variables were measured. 
    more » « less
  2. Long-term monitoring of riparian water tables and groundwater chemistry began in 2000 along four first or second order steams in and around the Gwynns Falls watershed in Baltimore City and County, MD. One site (Oregon Ridge) is in the completely forested Pond Branch catchment that serves as a ""reference"" study area for the Baltimore LTER (BES). Two sites (Glyndon, Gwynbrook) were in suburban areas of the watershed; one just upstream from the Glyndon BES long-term stream monitoring site in the headwaters of the Gwynns Falls, and one along a tributary that enters the Gwynns Falls just above the Gwynnbrook BES long-term stream monitoring site farther downstream. The final, urban site (Cahill) was along a tributary to the Gwynns Falls in Leakin Park in the urban core of the watershed. Water table data and more detailed descriptions of soils, vegetation, stream channel properties and microbial processes at these sites can be found in Groffman et al. (2002, Environmental Science and Technology 36:4547-4552) and Gift et al. (2010, Restoration Ecology 18:113-120). 
    more » « less
  3. In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Cub Hill stream sites. The Cub Hill site is 14 km from the Baltimore city center (39 degrees 24'30.20N, 76 degrees 30'50.62W) and is the location of the first permanent urban carbon flux tower in an urban/suburban environment, established in 2001 by the U.S. Forest Service. Three stream monitoring sites were established in the residential area in the footprint of the tower; Jennifer Branch at North Wind Rd. (JBNW) and two headwater tributaries to Jennifer Branch: Harford Hills (JBHH) and Ontario (JBON). These sites were sampled weekly from August 2003 through June 2010. 
    more » « less
  4. Abstract Stream geomorphic change is highly spatially variable but critical to landform evolution, human infrastructure, habitat, and watershed pollutant transport. However, measurements and process models of streambank erosion and floodplain deposition and resulting sediment fluxes are currently insufficient to predict these rates in all perennial streams over large regions. Here we measured long-term lateral streambank and vertical floodplain change and sediment fluxes using dendrogeomorphology in streams around the U.S. Mid-Atlantic, and then statistically modeled and extrapolated these rates to all 74 133 perennial, nontidal streams in the region using watershed- and reach-scale predictors. Measured long-term rates of streambank erosion and floodplain deposition were highly spatially variable across the landscape from the mountains to the coast. Random Forest regression identified that geomorphic change and resulting fluxes of sediment and nutrients, for both streambank and floodplain, were most influenced by urban and agricultural land use and the drainage area of the upstream watershed. Modeled rates for headwater streams were net erosional whereas downstream reaches were on average net depositional, leading to regional cumulative sediment loads from streambank erosion (−5.1 Tg yr −1 ) being nearly balanced by floodplain deposition (+5.3 Tg yr −1 ). Geomorphic changes in stream valleys had substantial influence on watershed sediment, phosphorus, carbon, and nitrogen budgets in comparison to existing predictions of upland erosion and delivery to streams and of downstream sediment loading. The unprecedented scale of these novel findings provides important insights into the balance of erosion and deposition in streams within disturbed landscapes and the importance of geomorphic change to stream water quality and carbon sequestration, and provides vital understanding for targeting management actions to restore watersheds. 
    more » « less
  5. In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Watershed 263 subwatersheds. Watershed 263 is a 364 ha urban storm drain watershed (or sewershed), with 30,000 residents with mixed industrial, institutional, and residential land uses. In March 2004, we established monitoring sites in two sub-watersheds within W263 (Baltimore Street and Lanvale Street). Both are approximately 17 ha with 50% impervious surface and 4% vegetation cover. 
    more » « less