Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.
more »
« less
The design space of strand displacement cascades with toehold-size clamps
DNA strand displacement cascades have proven to be a uniquely flexible and programmable primitive for constructing molecular logic circuits, smart structures and devices, and for systems with complex autonomously generated dynamics. Limiting their utility, however, strand displacement systems are susceptible to the spurious release of output even in the absence of the proper combination of inputs—so-called leak. A common mechanism for reducing leak involves clamping the ends of helices to prevent fraying, and thereby kinetically blocking the initiation of undesired displacement. Since a clamp must act as the incumbent toehold for toehold exchange, clamps cannot be stronger than a toehold. In this paper we systematize the properties of the simplest of strand displacement cascades (a translator) with toehold-size clamps. Surprisingly, depending on a few basic parameters, we find a rich and diverse landscape for desired and undesired properties and trade-offs between them. Initial experiments demonstrate a significant reduction of leak.
more »
« less
- Award ID(s):
- 1652824
- PAR ID:
- 10066029
- Date Published:
- Journal Name:
- DNA Computing and Molecular Programming 23
- Page Range / eLocation ID:
- 64-81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.more » « less
-
Ouldridge, Thomas E.; Wickham, Shelley F.J. (Ed.)A barrier to wider adoption of molecular computation is the difficulty of implementing arbitrary chemical reaction networks (CRNs) that are robust and replicate the kinetics of designed behavior. DNA Strand Displacement (DSD) cascades have been a favored technology for this purpose due to their potential to emulate arbitrary CRNs and known principles to tune their reaction rates. Progress on leakless cascades has demonstrated that DSDs can be arbitrarily robust to spurious "leak" reactions when incorporating systematic domain level redundancy. These improvements in robustness result in slower kinetics of designed reactions. Existing work has demonstrated the kinetic and thermodynamic effects of sequence mismatch introduction and elimination during displacement. We present a systematic, sequence modification strategy for optimizing the kinetics of leakless cascades without practical cost to their robustness. An in-depth case study explores the effects of this optimization when applied to a typical leakless translator cascade. Thermodynamic analysis of energy barriers and kinetic experimental data support that DSD cascades can be fast and robust.more » « less
-
Cascades of DNA strand displacement reactions enable the design of potentially large circuits with complex behaviour. Computational modelling of such systems is desirable to enable rapid design and analysis. In previous work, the expressive power of graph theory was used to enumerate reactions implementing strand displacement across a wide range of complex structures. However, coping with the rich variety of possible graph-based structures required enumeration rules with complicated side-conditions. This paper presents an alternative approach to tackle the problem of enumerating reactions at domain level involving complex structures by integrating with a geometric constraint solving algorithm. The rule sets from previous work are simplified by replacing side-conditions with a general check on the geometric plausibility of structures generated by the enumeration algorithm. This produces a highly general geometric framework for reaction enumeration. Here, we instantiate this framework to solve geometric constraints by a structure sampling approach in which we randomly generate sets of coordinates and check whether they satisfy all the constraints. We demonstrate this system by applying it to examples from the literature where molecular geometry plays an important role, including DNA hairpin and remote toehold reactions. This work therefore enables integration of reaction enumeration and structural modelling.more » « less
-
In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind. Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended “leak” reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new “Robust Detection” algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robust-by-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques.more » « less