skip to main content


Title: When Sentiment Analysis Meets Social Network: A Holistic User Behavior Modeling in Opinionated Data
User modeling is critical for understanding user intents, while it is also challenging as user intents are so diverse and not directly observable. Most existing works exploit specific types of behavior signals for user modeling, e.g., opinionated data or network structure; but the dependency among different types of user-generated data is neglected. We focus on self-consistence across multiple modalities of user-generated data to model user intents. A probabilistic generative model is developed to integrate two companion learning tasks of opinionated content modeling and social network structure modeling for users. Individual users are modeled as a mixture over the instances of paired learning tasks to realize their behavior heterogeneity, and the tasks are clustered by sharing a global prior distribution to capture the homogeneity among users. Extensive experimental evaluations on large collections of Amazon and Yelp reviews with social network structures confirm the effectiveness of the proposed solution. The learned user models are interpretable and predictive: they enable more accurate sentiment classification and item/friend recommendations than the corresponding baselines that only model a singular type of user behaviors.  more » « less
Award ID(s):
1553568
NSF-PAR ID:
10066047
Author(s) / Creator(s):
;
Date Published:
Journal Name:
KDD '18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
Page Range / eLocation ID:
1455 to 1464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow. 
    more » « less
  2. Explaining automatically generated recommendations allows users to make more informed and accurate decisions about which results to utilize, and therefore improves their satisfaction. In this work, we develop a multi-task learning solution for explainable recommendation. Two companion learning tasks of user preference modeling for recommendation and opinionated content modeling for explanation are integrated via a joint tensor factorization. As a result, the algorithm predicts not only a user's preference over a list of items, i.e., recommendation, but also how the user would appreciate a particular item at the feature level, i.e., opinionated textual explanation. Extensive experiments on two large collections of Amazon and Yelp reviews confirmed the effectiveness of our solution in both recommendation and explanation tasks, compared with several existing recommendation algorithms. And our extensive user study clearly demonstrates the practical value of the explainable recommendations generated by our algorithm. 
    more » « less
  3. null (Ed.)
    Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenarios in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies. 
    more » « less
  4. null (Ed.)
    Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public. 
    more » « less
  5. null (Ed.)
    Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ. 
    more » « less