This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.
more »
« less
Joint Turbo Receiver for LDPC-Coded MIMO Systems Based on Semi-definite Relaxation
Semi-definite relaxation (SDR) has demonstrated
the capability of approaching maximum-likelihood (ML) performance.
In this work, we first develop a new SDR-based detector
that exploits forward error correction (FEC) code information
in the detection stage. The joint SDR detector substantially
improves overall receiver performance by generating highly
reliable information to downstream decoder. For further performance
improvement, we integrate the joint SDR detector with
decoder using a feedback link to form an iterative turbo receiver.
Meanwhile, we propose a simplified SDR receiver that solves only
one SDR problem per codeword instead of solving multiple SDR
problems in the iterative turbo processing. This simplification
significantly reduces the complexity of SDR turbo receiver, while
maintaining a similarly superior error performance.
more »
« less
- Award ID(s):
- 1711823
- NSF-PAR ID:
- 10066207
- Date Published:
- Journal Name:
- IEEE Vehicular Technology Conference
- ISSN:
- 1090-3038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract: Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation.more » « less
-
This work develops a novel design of joint detection and decoding receiver for multiple-input multiple output (MIMO) wireless transmissions that utilizes polar codes in forward error correction (FEC). To optimize the overall receiver performance, we integrate the polar code constraints during signal detection by relaxing and transforming FEC code constraints from the original Galois field to the real field. We propose a novel joint linear programming (LP) optimization formulation that takes into consideration the transformed polar code constraints when designing a novel receiver robust against practical obstacles including channel state information (CSI) errors, additive noises, co-channel interferences, and pilot contamination. Our newly proposed joint LP formulation can also be integrated with reduced complexity polar decoders such as successive cancellation (SC) and successive cancellation list (SCL) decoders to deliver superior receiver performance at low cost.more » « less
-
Quantum error correction has recently been shown to benefit greatly from specific physical encodings of the code qubits. In particular, several researchers have considered the individual code qubits being encoded with the continuous variable GottesmanKitaev-Preskill (GKP) code, and then imposed an outer discrete-variable code such as the surface code on these GKP qubits. Under such a concatenation scheme, the analog information from the inner GKP error correction improves the noise threshold of the outer code. However, the surface code has vanishing rate and demands a lot of resources with growing distance. In this work, we concatenate the GKP code with generic quantum low-density parity-check (QLDPC) codes and demonstrate a natural way to exploit the GKP analog information in iterative decoding algorithms. We first show the noise thresholds for two lifted product QLDPC code families, and then show the improvements of noise thresholds when the iterative decoder – a hardware-friendly min-sum algorithm (MSA) – utilizes the GKP analog information. We also show that, when the GKP analog information is combined with a sequential update schedule for MSA, the scheme surpasses the well-known CSS Hamming bound for these code families. Furthermore, we observe that the GKP analog information helps the iterative decoder in escaping harmful trapping sets in the Tanner graph of the QLDPC code, thereby eliminating or significantly lowering the error floor of the logical error rate curves. Finally, we discuss new fundamental and practical questions that arise from this work on channel capacity under GKP analog information, and on improving decoder design and analysis.more » « less
-
This article investigates a robust receiver scheme for a single carrier, multiple-input–multiple-output (MIMO) underwater acoustic (UWA) communications, which uses the sparse Bayesian learning algorithm for iterative channel estimation embedded in Turbo equalization (TEQ). We derive a block-wise sparse Bayesian learning framework modeling the spatial correlation of the MIMO UWA channels, where a more robust expectation–maximization algorithm is proposed for updating the joint estimates of channel impulse response, residual noise, and channel covariance matrix. By exploiting the spatially correlated sparsity of MIMO UWA channels and the second-order a priori channel statistics from the training sequence, the proposed Bayesian channel estimator enjoys not only relatively low complexity but also more stable control of the hyperparameters that determine the channel sparsity and recovery accuracy. Moreover, this article proposes a low complexity space-time soft decision feedback equalizer (ST-SDFE) with successive soft interference cancellation. Evaluated by the undersea 2008 Surface Processes and Acoustic Communications Experiment, the improved sparse Bayesian learning channel estimation algorithm outperforms the conventional Bayesian algorithms in terms of the robustness and complexity, while enjoying better estimation accuracy than the orthogonal matching pursuit and the improved proportionate normalized least mean squares algorithms. We have also verified that the proposed ST-SDFE TEQ significantly outperforms the low-complexity minimum mean square error TEQ in terms of the bit error rate and error propagation.more » « less