skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Competitive Online Convex Optimization with Switching Costs and Ramp Constraints
We investigate competitive online algorithms for online convex optimization (OCO) problems with linear in-stage costs, switching costs and ramp constraints. While OCO problems have been extensively studied in the literature, there are limited results on the corresponding online solutions that can attain small competitive ratios. We first develop a powerful computational framework that can compute an optimized competitive ratio based on the class of affine policies. Our computational framework can handle a fairly general class of costs and constraints. Compared to other competitive results in the literature, a key feature of our proposed approach is that it can handle scenarios where infeasibility may arise due to hard feasibility constraints. Second, we design a robustification procedure to produce an online algorithm that can attain good performance for both average-case and worst-case inputs. We conduct a case study on Network Functions Virtualization (NFV) orchestration and scaling to demonstrate the effectiveness of our proposed methods.  more » « less
Award ID(s):
1717493 1457137 1509536
PAR ID:
10066301
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE international conference on computer communications (INFOCOM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There has been significant interest in leveraging limited look-ahead to achieve low competitive ratios for online convex optimization (OCO). However, existing online algorithms (such as Averaging Fixed Horizon Control (AFHC)) that can leverage look-ahead to reduce the competitive ratios still produce competitive ratios that grow unbounded as the coefficient ratio (i.e., the maximum ratio of the switching-cost coefficient and the service-cost coefficient) increases. On the other hand, the regularization method can attain a competitive ratio that remains bounded when the coefficient ratio is large, but it does not benefit from look-ahead. In this paper, we propose a new algorithm, called Regularization with Look-Ahead (RLA), that can get the best of both AFHC and the regularization method, i.e., its competitive ratio decreases with the look-ahead window size when the coefficient ratio is small, and remains bounded when the coefficient ratio is large. We also provide a matching lower bound for the competitive ratios of all online algorithms with look-ahead, which differs from the achievable competitive ratio of RLA by a factor that only depends on the problem size. The competitive analysis of RLA involves a non-trivial generalization of online primal-dual analysis to the case with look-ahead. 
    more » « less
  2. We study monotone submodular maximization under general matroid constraints in the online setting. We prove that online optimization of a large class of submodular functions, namely, threshold potential functions, reduces to online convex optimization (OCO). This is precisely because functions in this class admit a concave relaxation; as a result, OCO policies, coupled with an appropriate rounding scheme, can be used to achieve sublinear regret in the combinatorial setting. We also show that our reduction extends to many different versions of the online learning problem, including the dynamic regret, bandit, and optimistic-learning settings. 
    more » « less
  3. We introduce and study spatiotemporal online allocation with deadline constraints (SOAD), a new online problem motivated by emerging challenges in sustainability and energy. In SOAD, an online player completes a workload by allocating and scheduling it on the points of a metric space (X,d) while subject to a deadlineT. At each time step, a service cost function is revealed that represents the cost of servicing the workload at each point, and the player must irrevocably decide the current allocation of work to points. Whenever the player moves this allocation, they incur a movement cost defined by the distance metricd(⋅, ⋅) that captures, e.g., an overhead cost. SOAD formalizes the open problem of combining general metrics and deadline constraints in the online algorithms literature, unifying problems such as metrical task systems and online search. We propose a competitive algorithm for SOAD along with a matching lower bound establishing its optimality. Our main algorithm, ST-CLIP, is a learning-augmented algorithm that takes advantage of predictions (e.g., forecasts of relevant costs) and achieves an optimal consistency-robustness trade-off. We evaluate our proposed algorithms in a simulated case study of carbon-aware spatiotemporal workload management, an application in sustainable computing that schedules a delay-tolerant batch compute job on a distributed network of data centers. In these experiments, we show that ST-CLIP substantially improves on heuristic baseline methods. 
    more » « less
  4. This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environ- ments or deterministic environments with noisy observations. It also includes many important problems as special case, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained con- vex optimization. To solve this problem, this paper proposes a new algorithm that achieves O(√T ) expected regret and constraint violations and O(√T log(T )) high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. 
    more » « less
  5. This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environ- ments or deterministic environments with noisy observations. It also includes many important problems as special case, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained con- vex optimization. To solve this problem, this paper proposes a new algorithm that achieves O(√T ) expected regret and constraint violations and O(√T log(T )) high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. 
    more » « less