skip to main content


Title: A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes
Abstract

The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates.

 
more » « less
Award ID(s):
1708729 1420570
NSF-PAR ID:
10066551
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
5
Issue:
19
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A critical barrier to overcome in the development of solid‐state electrolytes for lithium batteries is the trade‐off between sacrificing ionic conductivity for enhancement of mechanical stiffness. Here, a physically cross‐linked, polymer‐supported gel electrolyte consisting of a lithium salt/ionic liquid solution featuring a fully zwitterionic (ZI) copolymer network is introduced for rechargeable lithium‐based batteries. The ZI scaffold is synthesized using a 3:1 molar ratio of 2‐methacryloyloxyethyl phosphorylcholine and sulfobetaine vinylimidazole, and the total polymer content is varied between 1.1 and 12.5 wt%. Room‐temperature ionic conductivity values comparable to the base liquid electrolyte (≈1 mS cm−1) are achieved in ZI copolymer‐supported gels that display compressive elastic moduli as large as 14.3 MPa due to ZI dipole–dipole cross‐links. Spectroscopic characterization suggests a change in the Li+coordination shell upon addition of the zwitterions, indicative of strong Li+···ZI group interactions. Li+transference number measurements reveal an increase in Li+conductivity within a ZI gel electrolyte (nearly doubles). ZI gels display enhanced stability against Li metal, dendrite suppression, and suitable charge–discharge performance in a graphite|lithium nickel cobalt manganese oxide cell. Fully ZI polymer networks in nonvolatile, ionic liquid‐based electrolytes represent a promising approach toward realizing highly conductive, mechanically rigid gels for lithium battery technologies.

     
    more » « less
  2. Abstract

    This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries.

     
    more » « less
  3. Abstract

    Transition metal phosphides are a new class of materials generating interest as alternative negative electrodes in lithium‐ion batteries. However, metal phosphide syntheses remain underdeveloped in terms of simultaneous control over phase composition and 3D nanostructure. Herein, M13 bacteriophage is employed as a biological scaffold to develop 3D nickel phosphide nanofoams with control over a range of phase compositions and structural elements. Virus‐templated Ni5P4nanofoams are then integrated as thin‐film negative electrodes in lithium‐ion microbatteries, demonstrating a discharge capacity of 677 mAh g–1(677 mAh cm–3) and an 80% capacity retention over more than 100 cycles. This strong electrochemical performance is attributed to the virus‐templated, nanostructured morphology, which remains electronically conductive throughout cycling, thereby sidestepping the need for conductive additives. When accounting for the mass of additional binder materials, virus‐templated Ni5P4nanofoams demonstrate the highest practical capacity reported thus far for Ni5P4electrodes. Looking forward, this synthesis method is generalizable and can enable precise control over the 3D nanostructure and phase composition in other metal phosphides, such as cobalt and copper.

     
    more » « less
  4. Abstract

    Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.

     
    more » « less
  5. Abstract

    Aqueous zinc metal batteries (AZMB) are emerging as a promising alternative to the prevailing existing Lithium‐ion battery technology. However, the development of AZMBs is hindered due to challenges including dendrite formation, hydrogen evolution reaction (HER), and ZnO passivation on the anode. Here, a tetraalkylsulfonamide (TAS) additive for suppressing HER, dendrite formation, and enhancing cyclability is rationally designed. Only 1 mmTAS is found that can effectively displace water molecules from the Zn2+solvation shell, thereby altering the solvation matrix of Zn2+and disrupting the hydrogen bond network of free water, as demonstrated through67 Zn and1H nuclear magnetic resonance spectroscopy, high‐resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. Voltammetry synchronized with in situ monitoring of the electrode surface reveals suppressed dendritic growth and HER in the presence of TAS. Electrochemical mass spectrometry (ECMS) captures real‐time HER suppression during Zn electrodeposition, revealing the ability of TAS to suppress the HER by an order of magnitude. A ≈25‐fold cycle life improvement from ≈100 h to over 2500 h in coin cells cycled in the presence of TAS. Furthermore, by suppressing passivation product formation, it is demonstrated that strategy robustly maximizes the stability of Zn metal anodes.

     
    more » « less