skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes
Abstract The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates.  more » « less
Award ID(s):
1708729 1420570
PAR ID:
10066551
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
5
Issue:
19
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries. 
    more » « less
  2. This paper analyzes a collection of conductive paints and tapes. We describe and compare their electrical conductivity, durability, appearance, and cost. We investigate different means of connecting these materials to each other and other electronic components-including connection via solder, conductive epoxy, conductive adhesives, and metal mechanical fasteners. We explore different means of insulating and protecting materials and provide the results of a range of durability tests. The results are discussed in the context of the development of interactive murals-large outdoor interactive surfaces that are intended to function for years. We identify two conductive paints, CuPro-Cote and Silver/Copper Super Shield, and two conductive tapes, Copper and Tin that are highly conductive, stable across most of our testing conditions and, we believe, suitable for interactive murals. 
    more » « less
  3. Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed. 
    more » « less
  4. Abstract Aqueous zinc metal batteries (AZMB) are emerging as a promising alternative to the prevailing existing Lithium‐ion battery technology. However, the development of AZMBs is hindered due to challenges including dendrite formation, hydrogen evolution reaction (HER), and ZnO passivation on the anode. Here, a tetraalkylsulfonamide (TAS) additive for suppressing HER, dendrite formation, and enhancing cyclability is rationally designed. Only 1 mmTAS is found that can effectively displace water molecules from the Zn2+solvation shell, thereby altering the solvation matrix of Zn2+and disrupting the hydrogen bond network of free water, as demonstrated through67 Zn and1H nuclear magnetic resonance spectroscopy, high‐resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. Voltammetry synchronized with in situ monitoring of the electrode surface reveals suppressed dendritic growth and HER in the presence of TAS. Electrochemical mass spectrometry (ECMS) captures real‐time HER suppression during Zn electrodeposition, revealing the ability of TAS to suppress the HER by an order of magnitude. A ≈25‐fold cycle life improvement from ≈100 h to over 2500 h in coin cells cycled in the presence of TAS. Furthermore, by suppressing passivation product formation, it is demonstrated that strategy robustly maximizes the stability of Zn metal anodes. 
    more » « less
  5. With more than 10 times the capacity of the graphite used in current commercial batteries, lithium metal is ideal for a high-capacity battery anode; however, lithium metal electrodes suffer from safety and efficiency problems that prevent their wide industrial adoption. Their intrinsic high reactivity towards most liquid organic electrolytes leads to lithium loss and dendrite growth, which result in poor efficiency and short circuiting. However, the multitude of factors that contribute to dendrite formation make determining a nucleation mechanism extremely difficult. Here, we study the intricate science of dendrite nucleation on metallic lithium by using an array of analytical techniques that provide simultaneous ultra-high spatial sensitivity and chemical selectivity. Our results reveal a 3D picture of the chemical make-up of the native Li surface and the resulting solid electrolyte interphase (SEI) with better than 200 nm resolution. We find that, contrary to the general understanding, the initial surface chemistry, not the topography, is the dominant factor leading to dendrite nucleation. Specifically, inhomogeneously distributed organic material in the native surface leads to inhomogeneously dispersed LiF-rich SEI regions where dendrite nucleation is favored. This has significant implications for battery research as it elucidates a mechanism for inhomogeneous SEI formation, something that is accepted, but not well understood, and highlights the importance of Li surface preparation for experimental studies, which is implicit in battery research, but not directly addressed in the literature. By homogenizing the initial lithium surface composition, and thus the SEI composition, we increase the number of dendrite nucleation sites and thereby decrease the dendrite size, which significantly increases the electrode lifetime. 
    more » « less