Smoothed-particle hydrodynamics (SPH) is a mesh-free method used to simulate volumetric media in fluids, astrophysics, and solid mechanics. Visualizing these simulations is problematic because these datasets often contain millions, if not billions of particles carrying physical attributes and moving over time. Radial basis functions (RBFs) are used to model particles, and overlapping particles are interpolated to reconstruct a high-quality volumetric field; however, this interpolation process is expensive and makes interactive visualization difficult. Existing RBF interpolation schemes do not account for color-mapped attributes and are instead constrained to visualizing just the density field. To address these challenges, we exploit ray tracing cores in modern GPU architectures to accelerate scalar field reconstruction. We use a novel RBF interpolation scheme to integrate per-particle colors and densities, and leverage GPU-parallel tree construction and refitting to quickly update the tree as the simulation animates over time or when the user manipulates particle radii. We also propose a Hilbert reordering scheme to cluster particles together at the leaves of the tree to reduce tree memory consumption. Finally, we reduce the noise of volumetric shadows by adopting a spatially temporal blue noise sampling scheme. Our method can provide a more detailed and interactive view of these large, volumetric, time-series particle datasets than traditional methods, leading to new insights into these physics simulations.
more »
« less
Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions
We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surface-based coordinate systems. For problems involving tracer transport in a given velocity field, the semi-Lagrangian framework allows these new methods to avoid the use of any stabilization terms (such as hyperviscosity) during time-integration, thus reducing the number of parameters that have to be tuned. The three new methods are based on interpolation using 1) global RBFs, 2) local RBF stencils, and 3) RBF partition of unity. For the latter two of these methods, we find that it is crucial to include some low degree spherical harmonics in the interpolants. Standard test cases consisting of solid body rotation and deformational flow are used to compare and contrast the methods in terms of their accuracy, efficiency, conservation properties, and dissipation/dispersion errors. For global RBFs, spectral spatial convergence is observed for smooth solutions on quasi-uniform nodes, while high-order accuracy is observed for the local RBF stencil and partition of unity approaches.
more »
« less
- Award ID(s):
- 1714844
- PAR ID:
- 10066601
- Date Published:
- Journal Name:
- Journal of computational physics
- Volume:
- 366
- ISSN:
- 0021-9991
- Page Range / eLocation ID:
- 170-190
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Radial basis functions (RBFs) are prominent examples for reproducing kernels with associated reproducing kernel Hilbert spaces (RKHSs). The convergence theory for the kernel-based interpolation in that space is well understood and optimal rates for the whole RKHS are often known. Schaback added the doubling trick [Math. Comp. 68 (1999), pp. 201–216], which shows that functions having double the smoothness required by the RKHS (along with specific, albeit complicated boundary behavior) can be approximated with higher convergence rates than the optimal rates for the whole space. Other advances allowed interpolation of target functions which are less smooth, and different norms which measure interpolation error. The current state of the art of error analysis for RBF interpolation treats target functions having smoothness up to twice that of the native space, but error measured in norms which are weaker than that required for membership in the RKHS. Motivated by the fact that the kernels and the approximants they generate are smoother than required by the native space, this article extends the doubling trick to error which measures higher smoothness. This extension holds for a family of kernels satisfying easily checked hypotheses which we describe in this article, and includes many prominent RBFs. In the course of the proof, new convergence rates are obtained for the abstract operator considered by Devore and Ron in [Trans. Amer. Math. Soc. 362 (2010), pp. 6205–6229], and new Bernstein estimates are obtained relating high order smoothness norms to the native space norm.more » « less
-
Abstract We prove existence of equal area partitions of the unit sphere via optimal transport methods, accompanied by diameter bounds written in terms of Monge–Kantorovich distances. This can be used to obtain bounds on the expectation of the maximum diameter of partition sets, when points are uniformly sampled from the sphere. An application to the computation of sliced Monge–Kantorovich distances is also presented.more » « less
-
null (Ed.)There are two main strategies for improving the projection-based reduced order model (ROM) accuracy—(i) improving the ROM, that is, adding new terms to the standard ROM; and (ii) improving the ROM basis, that is, constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose two new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct two new Lagrangian ROMs, which we denote α-ROM and λ-ROM. We show that both Lagrangian ROMs are more accurate than the standard Eulerian ROMs, that is, ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). In particular, the α-ROM can be orders of magnitude more accurate than the standard Eulerian ROMs. We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs’ accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis.more » « less
-
We introduce a differentiable moving particle representation based on the multi-level partition of unity (MPU) to represent dynamic implicit geometries. At the core of our representation are two groups of particles, named feature particles and sample particles, which can move in space and produce dynamic surfaces according to external velocity fields or optimization gradients. These two particle groups iteratively guide and correct each other by alternating their roles as inputs and outputs. Each feature particle carries a set of coefficients for a local quadratic patch. These particle patches are assembled with partition-of-unity weights to derive a continuous implicit global shape. Each sampling particle carries its position and orientation, serving as dense surface samples for optimization tasks. Based on these moving particles, we develop a fully differentiable framework to infer and evolve highly detailed implicit geometries, enhanced by a multi-level background grid for particle adaptivity, across different inverse tasks. We demonstrated the efficacy of our representation through various benchmark comparisons with state-of-the-art neural representations, achieving lower memory consumption, fewer training iterations, and orders of magnitude higher accuracy in handling topologically complex objects and dynamic tracking tasks.more » « less
An official website of the United States government

