skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intentional islanding of power grids with data depth
A new method for intentional islanding of power grids is proposed, based on a data-driven and inherently geometric concept of data depth. The utility of the new depth-based islanding is illustrated in application to the Italian power grid. It is found that spectral clustering with data depths outperforms spectral clustering with k-means in terms of k-way expansion. Directions on how the k-depths can be extended to multilayer grids in a tensor representation are outlined.  more » « less
Award ID(s):
1736417 1736368 1633331
PAR ID:
10066680
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional load shedding schemes can be inadequate in grids with high renewable penetration, leading to unstable events and unnecessary grid islanding. Although for both manual and automatic operating modes load shedding areas have been predefined by grid operators, they have remained fixed, and may be sub-optimal due to dynamic operating conditions. In this work, a distributed tri-level linear programming model for automatic load shedding to avoid system islanding is presented. Preventing islanding is preferred because it reduces the need for additional load shedding besides the disconnection of transmission lines between islands. This is crucial as maintaining the local generation-demand balance is necessary to preserve frequency stability. Furthermore, uneven distribution of generation resources among islands can lead to increased load shedding, causing economic and reliability challenges. This issue is further compounded in modern power systems heavily dependent on non-dispatchable resources like wind and solar. The upper-level model uses complex power flow measurements to determine the system areas to shed load depending on actual operating conditions using a spectral clustering approach. The mid-level model estimates the area system state, while the lower-level model determines the locations and load values to be shed. The solution is practical and promising for real-world applications. 
    more » « less
  2. Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing a continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop in voltage and frequency upon disconnecting from the main grid. To appropriately model the above, non-linear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently developed “l1-proximal” Surrogate Lagrangian Relaxation are extended. Testing results based on the nine-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations, thereby avoiding approximations inherent to existing methods; in particular, fast convergence of the method to feasible solutions is demonstrated. It is also demonstrated that through the optimization, the number of tap changes is drastically reduced, and the method is capable of efficiently handling networks with meshed topologies. 
    more » « less
  3. M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)
    The null space of the k-th order Laplacian Lk, known as the {\em k-th homology vector space}, encodes the non-trivial topology of a manifold or a network. Understanding the structure of the homology embedding can thus disclose geometric or topological information from the data. The study of the null space embedding of the graph Laplacian L0 has spurred new research and applications, such as spectral clustering algorithms with theoretical guarantees and estimators of the Stochastic Block Model. In this work, we investigate the geometry of the k-th homology embedding and focus on cases reminiscent of spectral clustering. Namely, we analyze the {\em connected sum} of manifolds as a perturbation to the direct sum of their homology embeddings. We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components. The proposed framework is applied to the {\em shortest homologous loop detection} problem, a problem known to be NP-hard in general. Our spectral loop detection algorithm scales better than existing methods and is effective on diverse data such as point clouds and images. 
    more » « less
  4. Internet-of-things (IoT) introduce new attack surfaces for power grids with the usage of Wi-Fi enabled high wattage appliances. Adversaries can use IoT networks as a foothold to significantly change load demands and cause physical disruptions in power systems. This new IoT-based attack makes current security mechanisms, focusing on either power systems or IoT clouds, ineffective. To defend the attack, we propose to use a data-centric edge computing infrastructure to host defense mechanisms in IoT clouds by integrating physical states in decentralized regions of a power grid. By enforcing security policies on IoT devices, we can significantly limit the range of malicious activities, reducing the impact of IoT-based attacks. To fully understand the impact of data-centric edge computing on IoT clouds and power systems, we developed a cyber-physical testbed simulating six different power grids. Our preliminary results show that performance overhead is negligible, with less than 5% on average. 
    more » « less
  5. Comprehending the impact of wildfire smoke on photovoltaic (PV) systems is of utmost importance in ensuring the dependability and consistency of power systems, particularly due to the growing prevalence of PV installations and the occurrence of wildfires. Nevertheless, this issue has not received extensive investigation within the current literature. A major obstacle in studying this phenomenon lies in accurately quantifying the impact of smoke. Conventional techniques such as aerosol optical depth (AOD) and PM 2.5 are inadequate for accurately assessing the influence of wildfire smoke on PV systems due to the complex interplay of smoke elevation, dynamics, and nonlinear effects on the solar spectral irradiance. To address this challenge, a new methodology is developed in this research that employs the optical properties of wildfire smoke. This approach utilizes the spectral response (SR) of PV devices to estimate the theoretical reduction in PV power output. The findings of this study enable precise measurement of the power output reduction caused by wildfire smoke for different types of PV cells. This newly devised method can be adopted for power system operation and planning to ensure the stability and reliability of power grids. Additionally, this study highlights the need to consider different PV cell technologies in regions at high risk of wildfires to minimize the power reduction caused by wildfire smoke. 
    more » « less