skip to main content


Title: Recent Progress in Applications of the Cold Sintering Process for Ceramic–Polymer Composites
Abstract

Ceramic–polymer composites are of interest for designing enhanced and unique properties. However, the processing temperature windows of sintering ceramics are much higher than that of compaction, extrusion, or sintering of polymers, and thus traditionally there has been an inability to cosinter ceramic–polymer composites in a single step with high amounts of ceramics. The cold sintering process is a low‐temperature sintering technology recently developed for ceramics and ceramic‐based composites. A wide variety of ceramic materials have now been demonstrated to be densified under the cold sintering process and therefore can be all cosintered with polymers from room temperature to 300 °C. Here, the status, understanding, and application of cold cosintering, with different examples of ceramics and polymers, are discussed. One has to note that these types of cold sintering processes are yet new, and a full understanding will only emerge after more ceramic–polymer examples emerge and different research groups build upon these early observations. The general processing, property designs, and an outlook on cold sintering composites are outlined. Ultimately, the cold sintering process could open up a new multimaterial design space and impact the field of ceramic–polymer composites.

 
more » « less
NSF-PAR ID:
10066812
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
39
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The cold sintering process (CSP) is a low-temperature consolidation method used to fabricate materials and their composites by applying transient solvents and external pressure. In this mechano-chemical process, the local dissolution, solvent evaporation, and supersaturation of the solute lead to “solution-precipitation” for consolidating various materials to nearly full densification, mimicking the natural pressure solution creep. Because of the low processing temperature (<300°C), it can bridge the temperature gap between ceramics, metals, and polymers for co-sintering composites. Therefore, CSP provides a promising strategy of interface engineering to readily integrate high-processing temperature ceramic materials (e.g., active electrode materials, ceramic solid-state electrolytes) as “grains” and low-melting-point additives (e.g., polymer binders, lithium salts, or solid-state polymer electrolytes) as “grain boundaries.” In this minireview, the mechanisms of geomimetics CSP and energy dissipations are discussed and compared to other sintering technologies. Specifically, the sintering dynamics and various sintering aids/conditions methods are reviewed to assist the low energy consumption processes. We also discuss the CSP-enabled consolidation and interface engineering for composite electrodes, composite solid-state electrolytes, and multi-component laminated structure battery devices for high-performance solid-state batteries. We then conclude the present review with a perspective on future opportunities and challenges. 
    more » « less
  2. Abstract

    This paper describes a sintering technique for ceramics and ceramic‐based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C. To emphasize the incredible reduction in sintering temperature relative to conventional thermal sintering this new approach is named the “Cold Sintering Process” (CSP). Basically CSP uses a transient aqueous environment to effect densification by a mediated dissolution–precipitation process. CSP of NaCl, alkali molybdates and V2O5with small concentrations of water are described in detail, but the process is extended and demonstrated for a diverse range of chemistries (oxides, carbonates, bromides, fluorides, chlorides and phosphates), multiple crystal structures, and multimaterial applications. Furthermore, the properties of selected CSP samples are demonstrated to be essentially equivalent as samples made by conventional thermal sintering.

     
    more » « less
  3. Abstract

    This paper reviews the synthesis of BaTiO3-based ceramic and composites through the cold sintering process. Cold sintering is a densification process that works with a low-temperature mechanism known as pressure solution creep. This provides several opportunities to fabricate BaTiO3into new composite structures that could provide important advanced dielectric properties. Here we revisit the challenges of densifying a material such as BaTiO3that has incongruent dissolution. We consider the issues of surface chemistry, selection of transient flux, core–shell designs in BaTiO3, co-sintering with polymers in the grain boundaries and the technical challenges associated with incorporating all these ideas into tape casting steps for future fabrication of multilayer device structures.

     
    more » « less
  4. Medical ultrasound and other devices that require transducer arrays are difficult to manufacture, particularly for high frequency devices (>30 MHz). To enable focusing and beam steering, it is necessary to reduce the center-to-center element spacing to half of the acoustic wavelength. Conventional methodologies prevent co-sintering ceramic–polymer composites due to the low decomposition temperatures of the polymer. Moreover, for ultrasound transducer arrays exceeding 30 MHz, methods such as dice-and-fill cannot provide the dimensional tolerances required. Other techniques in which the ceramic is formed in the green state often fail to retain the required dimensions without distortion on firing the ceramic. This paper explores the use of the cold sintering process to produce dense lead zirconate titanate (PZT) ceramics for application in high frequency transducer arrays. PZT–polymer 2-2 composites were fabricated by cold sintering tape cast PZT with Pb nitrate as a sintering aid and ZnO as the sacrificial layer. PZT beams of 35 μm width with ~5.4 μm kerfs were produced by this technique. The ZnO sacrificial layer was also found to serve as a liquid phase sintering aid that led to grain growth in adjacent PZT. This composite produced resonance frequencies of >17 MHz. 
    more » « less
  5. Abstract

    A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.

     
    more » « less