skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BaTiO 3 -based composites provide new opportunities enabled by the cold sintering process
Abstract This paper reviews the synthesis of BaTiO3-based ceramic and composites through the cold sintering process. Cold sintering is a densification process that works with a low-temperature mechanism known as pressure solution creep. This provides several opportunities to fabricate BaTiO3into new composite structures that could provide important advanced dielectric properties. Here we revisit the challenges of densifying a material such as BaTiO3that has incongruent dissolution. We consider the issues of surface chemistry, selection of transient flux, core–shell designs in BaTiO3, co-sintering with polymers in the grain boundaries and the technical challenges associated with incorporating all these ideas into tape casting steps for future fabrication of multilayer device structures.  more » « less
Award ID(s):
2134643
PAR ID:
10502863
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Japanese Journal of Applied Physics
Volume:
62
Issue:
SM
ISSN:
0021-4922
Page Range / eLocation ID:
SM1030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Cold Sintering Process (CSP) can provide opportunities to fabricate high-performance BaTiO3dielectric composites with polymer materials that are typically difficult to impossible to co-process under a conventional sintering process. Therefore, we investigated the preparation process of BaTiO3sintered body by CSP and integrated a well-dispersed intergranular polymer phase. In this study, we focused on preparing BaTiO3and Polytetrafluoroethylene (PTFE) composites. We considered the importance of the particle size of the PTFE phase, and correlated the impact on the composite dielectric properties. Through fitting a general-mixing-law to the dielectric properties as a function of volume fraction, we could deduce more homogeneous composites obtained in using the 200 nm PTFE powders. In addition, the temperature dependent dielectric properties and field dependent conductivity of the composites was investigated. It was found that with the good dispersion of the PTFE can suppress the leakage current density in the dielectric composites. 
    more » « less
  2. Abstract All‐solid‐state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid‐state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co‐sintering of ceramics, polymers and lithium salts, leading to re‐densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All‐solid‐state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes. 
    more » « less
  3. Abstract This work investigates the effects of doping on both the thermodynamics and kinetics of sintering in aluminum‐doped yttrium oxide nanoparticles (Al‐doped Y2O3), with the objective of delineating their interdependent effects at different stages of the process. Direct measurements of surface and grain boundary energies using differential scanning calorimetry showed that Al‐doping decreases both interfacial energies, leading to an increase in dihedral angle (from 152.7 ± 5.6° to 165.8 ± 5.5°) and, therefore, sintering stress. Densification and grain growth analyses showed that despite this increase in sintering stress, the onset of sintering is delayed for the Al‐doped samples, demonstrating that a large dihedral angle is a necessary but not sufficient condition for densification. The measurements of activation energies for densification and grain growth point out that Al suppresses grain boundary mobility by increasing the activation energy from 400 to 448 kJ/mol, hindering densification at the intermediate stages of sintering. At temperatures above 1150℃, grain growth is activated in the Al‐doped samples, which rapidly releases the accumulated sintering stress and exhibits a higher densification rate than in undoped Y2O3. This study demonstrates a complex interconnectivity between the thermodynamics and kinetics at different temperature ranges of sintering and reinforces the need for a comprehensive description for proper design of sintering aids. 
    more » « less
  4. Abstract BaTiO3is a technologically relevant material in the perovskite oxide class with above‐room‐temperature ferroelectricity and a very large electro‐optical coefficient, making it highly suitable for emerging electronic and photonic devices. An easy, robust, straightforward, and scalable growth method is required to synthesize epitaxial BaTiO3thin films with sufficient control over the film's stoichiometry to achieve reproducible thin film properties. Here the growth of BaTiO3thin films by hybrid molecular beam epitaxy is reported. A self‐regulated growth window is identified using complementary information obtained from reflection high energy electron diffraction, the intrinsic film lattice parameter, film surface morphology, and scanning transmission electron microscopy. Subsequent optical characterization of the BaTiO3films by spectroscopic ellipsometry revealed refractive index and extinction coefficient values closely resembling those of stoichiometric bulk BaTiO3crystals for films grown inside the growth window. Even in the absence of a lattice parameter change of BaTiO3thin films, degradation of optical properties is observed, accompanied by the appearance of a wide optical absorption peak in the IR spectrum, attributed to optical transitions involving defect states present. Therefore, the optical properties of BaTiO3can be utilized as a much finer and more straightforward probe to determine the stoichiometry level present in BaTiO3films. 
    more » « less
  5. Abstract This study explores cold sintering of naturally occurring minerals as supplementary cementitious materials (SCM) or cement analogs, which have the potential to transform the traditional high‐energy, high‐emission cement manufacturing pathways. Diopside (MgCaSi2O6), a natural inosilicate, is used as the model system. As diopside is hard for cold sintering directly (by itself), this study demonstrates that the addition of amorphous silica nanoparticles can enable cold sintering of diopside. The cold‐sintered diopside–silica composites are characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The effect of the relative weight percentage of silica added is examined. The relative density of the cold‐sintered composite reaches nearly 90% at 400 MPa and 200°C in 60 min. For specimens with the addition of 30 wt% or more of amorphous SiO2, cold sintering also induces partial crystallization, converting a fraction of amorphous silica to quartz. The crystallization kinetics exhibits a stochastic nature. The Vickers hardness of the cold‐sintered diopside–silica composite increases with increasing amount of silica, whichpromotes cold sintering, reaching ∼3 GPa with 20 wt% or more silica. The diopside–silica composites studied here serve as a model system for metal‐leached silicate mine tailings, which are expected to have nanoporous amorphous silica shells on silicate particles to enable the silica‐assisted cold sintering mechanism discovered in this study. 
    more » « less