skip to main content


Title: BaTiO 3 -based composites provide new opportunities enabled by the cold sintering process
Abstract

This paper reviews the synthesis of BaTiO3-based ceramic and composites through the cold sintering process. Cold sintering is a densification process that works with a low-temperature mechanism known as pressure solution creep. This provides several opportunities to fabricate BaTiO3into new composite structures that could provide important advanced dielectric properties. Here we revisit the challenges of densifying a material such as BaTiO3that has incongruent dissolution. We consider the issues of surface chemistry, selection of transient flux, core–shell designs in BaTiO3, co-sintering with polymers in the grain boundaries and the technical challenges associated with incorporating all these ideas into tape casting steps for future fabrication of multilayer device structures.

 
more » « less
Award ID(s):
2134643
PAR ID:
10502863
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Japanese Journal of Applied Physics
Volume:
62
Issue:
SM
ISSN:
0021-4922
Page Range / eLocation ID:
SM1030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Cold Sintering Process (CSP) can provide opportunities to fabricate high-performance BaTiO3dielectric composites with polymer materials that are typically difficult to impossible to co-process under a conventional sintering process. Therefore, we investigated the preparation process of BaTiO3sintered body by CSP and integrated a well-dispersed intergranular polymer phase. In this study, we focused on preparing BaTiO3and Polytetrafluoroethylene (PTFE) composites. We considered the importance of the particle size of the PTFE phase, and correlated the impact on the composite dielectric properties. Through fitting a general-mixing-law to the dielectric properties as a function of volume fraction, we could deduce more homogeneous composites obtained in using the 200 nm PTFE powders. In addition, the temperature dependent dielectric properties and field dependent conductivity of the composites was investigated. It was found that with the good dispersion of the PTFE can suppress the leakage current density in the dielectric composites.

     
    more » « less
  2. Abstract

    Surface energy (γS) and grain boundary energy (γGB) of yttrium oxide (Y2O3) were determined by analyzing the heat of sintering (ΔHsintering) using differential scanning calorimetry (DSC). The data allowed quantification of sintering driving forces, which when combined with a thorough kinetic analysis of the process, provide better understanding of Y2O3densification as well as insights into effective strategies to improve its sinterability. The quantitative thermodynamic study revealed moderate thermodynamic driving force for densification in Y2O3(as compared to other oxides) represented by a dihedral angle of 152.7° calculated from its surface and grain boundary energies. The activation energy was determined as 307 ± 61 kJ/mol, consistent with activation energies previously reported for processes relevant to sintering of Y2O3,such as Y3+diffusion and grain boundary mobility. Finally, we propose that a refined deconvolution study on the DSC curve for Y2O3sintering, combined with the associated material's microstructure evolution, may help identify shifts in sintering mechanisms, and therefore, specific activation energies at increasing temperatures.

     
    more » « less
  3. Abstract

    Complex multiphase nanocomposite designs present enormous opportunities for developing next‐generation integrated photonic and electronic devices. Here, a unique three‐phase nanostructure combining a ferroelectric BaTiO3, a wide‐bandgap semiconductor of ZnO, and a plasmonic metal of Au toward multifunctionalities is demonstrated. By a novel two‐step templated growth, a highly ordered Au–BaTiO3–ZnO nanocomposite in a unique “nanoman”‐like form, i.e., self‐assembled ZnO nanopillars and Au nanopillars in a BaTiO3matrix, is realized, and is very different from the random three‐phase ones with randomly arranged Au nanoparticles and ZnO nanopillars in the BaTiO3matrix. The ordered three‐phase “nanoman”‐like structure provides unique functionalities such as obvious hyperbolic dispersion in the visible and near‐infrared regime enabled by the highly anisotropic nanostructures compared to other random structures. Such a self‐assembled and ordered three‐phase nanocomposite is obtained through a combination of vapor–liquid–solid (VLS) and two‐phase epitaxy growth mechanisms. The study opens up new possibilities in the design, growth, and application of multiphase structures and provides a new approach to engineer the ordering of complex nanocomposite systems with unprecedented control over electron–light–matter interactions at the nanoscale.

     
    more » « less
  4. Abstract

    This paper describes a sintering technique for ceramics and ceramic‐based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C. To emphasize the incredible reduction in sintering temperature relative to conventional thermal sintering this new approach is named the “Cold Sintering Process” (CSP). Basically CSP uses a transient aqueous environment to effect densification by a mediated dissolution–precipitation process. CSP of NaCl, alkali molybdates and V2O5with small concentrations of water are described in detail, but the process is extended and demonstrated for a diverse range of chemistries (oxides, carbonates, bromides, fluorides, chlorides and phosphates), multiple crystal structures, and multimaterial applications. Furthermore, the properties of selected CSP samples are demonstrated to be essentially equivalent as samples made by conventional thermal sintering.

     
    more » « less
  5. Abstract

    All‐solid‐state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid‐state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co‐sintering of ceramics, polymers and lithium salts, leading to re‐densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All‐solid‐state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.

     
    more » « less