skip to main content


Title: MOF-based ternary nanocomposites for better CO 2 photoreduction: roles of heterojunctions and coordinatively unsaturated metal sites
Semiconductors are the most widely used catalysts for CO 2 photoreduction. However, their efficiencies are limited by low charge carrier density and poor CO 2 activation. Towards solving these issues, a metal–organic framework (MOF)-based ternary nanocomposite was synthesized through self-assembly of TiO 2 /Cu 2 O heterojunctions via a microdroplet-based approach followed by in situ growth of Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylate). With increased charge carrier density and efficient CO 2 activation, the hybrid ternary nanocomposite exhibits a high CO 2 conversion efficiency and preferential formation of CH 4 . Systematic measurements by using gas chromatography, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and time-resolved in situ diffuse reflectance infrared Fourier transform spectroscopy reveal that the semiconductor heterojunction and the coordinatively unsaturated copper sites within the hybrid nanostructure are attributable to the performance enhancements.  more » « less
Award ID(s):
1727553
NSF-PAR ID:
10067167
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
3
ISSN:
2050-7488
Page Range / eLocation ID:
932 to 940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.

     
    more » « less
  2. The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, and photodetectors. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In2O3-based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable TFT performance, identified vacancy-based native defect doping mechanisms, suggested interfacial buffer layers to promote charge injection capability, and established the role of third cation species on the carrier generation and carrier transport. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 103 at ±3 V, a low saturation current of ~2x10-10, and a small turn-on voltage of -0.5 V. With all the previous achievements and investigations about p-type oxide semiconductors, challenges remain for implementing p-type oxide realization. For the implementation of oxide-based p-n heterojunctions, the performance needs to be further enhanced. The current on/off ration may be limited, in our device structure, due to either high reverse saturation current (or current density) or non-ideal performance. In this study, two rational strategies are suggested to introduce an “intrinsic” layer, which is expected to reduce the reverse saturation current between p-SnOx and n-IGZO and hence increase the on/off ratio. The carrier density of n-IGZO is engineered in-situ during the sputtering process, by which compositionally homogeneous IGZO with significantly reduced carrier density is formed at the interface. Then, higher carrier density IGZO is formed continuously on the lower carrier density IGZO during the sputtering process without any exposure of the sample to the air. Alternatively, heterogeneous oxides of MgO and SiO2 are integrated into between p-SnOx and n-IGZO, by which the defects on the surface can be passivated. The interfacial properties are thoroughly investigated using transmission electron microscopy and atomic force microscopy. The I-V characteristics are compared between the set of devices integrated with two types of “intrinsic” layers. The current research results are expected to contribute to the development of p-type oxides and their industrial application manufacturing process that meets current processing requirements, such as mass production in p-type oxide semiconductors. 
    more » « less
  3.  
    more » « less
  4. Abstract

    Metal-organic frameworks (MOFs) have attracted much attention in the past decades owing to their amazing properties, including rich surface chemistry, flexible structure, superior surface area, and tunable porosity. MOFs are conventionally synthesized via wet-chemistry methods, which, however, are oftentimes plagued by long reaction durations, inhomogeneous mixing, and limited batch processes. This article reviews a rapid microdroplet-based nanomanufacturing process to fabricate MOFs-based functional materials with controlled hierarchical nanostructures to overcome the aforementioned disadvantages of wet-chemistry processes. The general formation pathways of MOFs inside the microdroplets were investigated by both experimental and theoretical approaches. Further, strategies to integrate MOFs with semiconductors to form hybrid photocatalysts are also summarized towards addressing environmental challenges, with a major focus on CO2photoreduction. The quantitative mechanisms of CO2adsorption, activation, and charge transfer within the hybrid nanostructures were explored by variousin-situtechniques, such as diffuse reflectance infrared Fourier transform spectroscopy, photoluminescence spectroscopy, and x-ray photoelectron spectroscopy. This review provides a new avenue for the rational design of MOFs-based functional materials to tackle a variety of environmental issues, including but not limited to global warming, air pollution, and water contamination.

     
    more » « less
  5. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less