skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two- and three-dimensional self-folding of free-standing graphene by liquid evaporation
Two-dimensional (2-D) atomically thin graphene has exhibited overwhelming excellent properties over its bulk counterpart graphite, yet the broad applications and explorations of its unprecedented properties require a diversity of its geometric morphologies, beyond its inherently planar structures. In this study, we present a self-folding approach for converting 2-D planar free-standing graphene to 2-D and 3-D folded structures through the evaporation of its liquid solutions. This approach involves competition between the surface energy of the liquid, and the deformation energy and van der Waals energy of graphene. An energy-based theoretical model is developed to describe the self-folding process during liquid evaporation by incorporating both graphene dimensions and surface wettability. The critical elastocapillary length by liquid evaporation is extracted and exemplified by investigating three typical graphene geometries with rectangular, circular and triangular shapes. After the complete evaporation of the liquid, the critical self-folding length of graphene that can enable a stable folded pattern by van der Waals energy is also obtained. In parallel, full-scale molecular dynamics (MD) simulations are performed to monitor the evolution of deformation energies and folded patterns with liquid evaporation. The simulation results demonstrate the formation of 2-D folded racket-like and 3-D folded cone-like patterns and show remarkable agreement with theoretical predictions in both energy variations and folded patterns. This work offers quantitative guidance for controlling the self-folding of graphene and other 2-D materials into complex structures by liquid evaporation.  more » « less
Award ID(s):
1728149
PAR ID:
10067177
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
29
ISSN:
1744-683X
Page Range / eLocation ID:
5968 to 5976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measure and model monolayers of concentrated diffusing colloidal probes interacting with polymerized liquid crystal (PLC) planar surfaces. At topological defects in local nematic director profiles at PLC surfaces, we observe time-averaged two-dimensional particle density profiles of diffusing colloidal probes that closely correlate with spatial variations in PLC optical properties. An inverse Monte Carlo analysis of particle concentration profiles yields two-dimensional PLC interfacial energy landscapes on the kT -scale, which is the inherent scale of many interfacial phenomena ( e.g. , self-assembly, adsorption, diffusion). Energy landscapes are modelled as the superposition of macromolecular repulsion and van der Waals attraction based on an anisotropic dielectric function obtained from the liquid crystal birefringence. Modelled van der Waals landscapes capture most net energy landscape variations and correlate well with experimental PLC director profiles around defects. Some energy landscape variations near PLC defects indicate either additional local repulsive interactions or possibly the need for more rigorous van der Waals models with complete spectral data. These findings demonstrate direct, sensitive measurements of kT -scale van der Waals energy landscapes at PLC interfacial defects and suggest the ability to design interfacial anisotropic materials and van der Waals energy landscapes for colloidal assembly. 
    more » « less
  2. Continuum mechanics break down in bending stiffness calculations of mono- and few-layered two-dimensional (2D) van der Waals crystal sheets, because their layered atomistic structures are uniquely characterized by strong in-plane bonding coupled with weak interlayer interactions. Here, we elucidate how the bending rigidities of pristine mono- and few-layered molybdenum disulfide (MoS 2 ), graphene, and hexagonal boron nitride (hBN) are governed by their structural geometry and intra- and inter-layer bonding interactions. Atomic force microscopy experiments on the self-folded conformations of these 2D materials on flat substrates show that the bending rigidity of MoS 2 significantly exceeds those of graphene or hBN of comparable layers, despite its much lower tensile modulus. Even on a per-thickness basis, MoS 2 is found to possess similar bending stiffness to hBN and is much stiffer than graphene. Density functional theory calculations suggest that this high bending rigidity of MoS 2 is due to its large interlayer thickness and strong interlayer shear, which prevail over its weak in-plane bonding. 
    more » « less
  3. Solid-state thermionic devices based on van der Waals structures were proposed for nanoscale thermal to electrical energy conversion and integrated electronic cooling applications. We study thermionic cooling across gold-graphene-WSe 2 -graphene-gold structures computationally and experimentally. Graphene and WSe 2 layers were stacked, followed by deposition of gold contacts. The I - V curve of the structure suggests near-ohmic contact. A hybrid technique that combines thermoreflectance and cooling curve measurements is used to extract the device ZT . The measured Seebeck coefficient, thermal and electrical conductance, and ZT values at room temperatures are in agreement with the theoretical predictions using first-principles calculations combined with real-space Green’s function formalism. This work lays the foundation for development of efficient thermionic devices. 
    more » « less
  4. Abstract Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials. 
    more » « less
  5. Understanding how dipolar, non-centrosymmetric organic semiconductors self-assemble, nucleate, and crystallize is integral for designing new molecular solids with unique physical properties and light-matter interactions. However, dipole–dipole and van der Waals interactions compete to direct the assembly of these compounds, making it difficult to predict how solids are formed from individual molecules. Here, we investigate four small molecules ( TpCPD , TpDCF , AcCPD , and AcDCF ) possessing anisotropic, non-planar structures and large dipole moments, and establish robust algorithms to control their molecular self-assembly via simple physical vapor deposition. Each molecule contains a central polar moiety, consisting of either a cyclopentadienone (CPD, ca. 3.5 D dipole moment) or dicyanofulvene (DCF, ca. 7.0 D dipole moment) core, that is surrounded by either four twisted phenyl (Tp) groups or a fused aromatic (acenaphthene, Ac) ring system. We find that only molecules containing the fused ring system form 1D nanowires due to the stronger van der Waals associations of the long, planar acenaphthene moieties. We examine the kinetics of self-assembly for AcDCF and create diverse 1D morphologies, including both curved and linear nanostructures. Finally, using conductive AFM (c-AFM) measurements, we show that 1D AcDCF wires support higher current densities relative to randomly-oriented clusters lacking long-range order. 
    more » « less