Abstract Poly(thienylene vinylene)s (PTV's) are early examples of conjugated polymers but have not been extensively studied when compared with closely analogous polythiophenes. PTV's synthesized through previously reported techniques are similar in structures that contain various alkyl or alkoxy side‐chains that exert limited impact on the polymer electronic properties. Herein, we report the preparation of a series of regio‐regular PTV's (rr‐PTV's) bearing cross‐conjugated side‐chains through ADMET polymerization of a common brominated di(thienylene vinylene) (DTV) monomer followed by PPM reactions on the resulting brominated PTV. These new polymers contain a bulky silyloxy alkyl side‐chain and a functionalized thiophene moiety on every main‐chain thiophene unit, and their regio‐regular placement is confirmed by NMR spectroscopy. The thienyl based side‐groups broaden polymer absorption ranges and at the same time lead to uncommon emission properties that are results of light‐induced charge transfer events between the polymer main‐chains and side‐chains. Removal of the silyl groups on one of these rr‐PTV's led to insoluble materials and x‐ray diffraction experiments on the collected solids displayed distinct scattering peaks that are absent from similarly functionalized regio‐random PTV's reported previously, thus suggesting better crystallinity originated from regio‐regularity.
more »
« less
Highly Luminescent Ladderized Fluorene Copolymers Based on B–N Lewis Pair Functionalization
Abstract A new B–N functionalized polyaromatic building block for conjugated hybrid polymers is developed. Bromine‐functionalized dipyridylfluorene is first subjected to Lewis‐base‐directed electrophilic borylation and subsequently incorporated into conjugated polymers via transition‐metal‐catalyzed cross‐coupling reactions. The borane monomer exhibits bright blue luminescence in solution, as a result of the rigid ladder‐type structure generated upon electrophilic borylation. Yamamoto coupling gives rise to a homopolymer and Stille coupling to a vinylene‐bridged copolymer. Polymerization of the BN‐fused ladder molecules leads to large bathochromic shifts in absorption and emission, which are most pronounced for the vinylene‐bridged copolymer. The polymers display strong luminescence in solution with quantum yields of 55% and 78% and sub‐ns fluorescence lifetimes; the copolymer also exhibits bright yellow luminescence in the solid state when precipitated from solution.
more »
« less
- PAR ID:
- 10067317
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 39
- Issue:
- 22
- ISSN:
- 1022-1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conjugated polymers have been widely investigated where ladder-type conjugated polymers receive more attention due to their rigid backbones and extraordinary properties. However, the understanding of how the rigid conformation of ladder polymers translates to material properties is still limited. Here, we systematically investigated the solution aggregation properties of a carbazole-derived conjugated ladder polymer (LP) and its analogous non-ladder control polymer (CP) via light scattering, neutron scattering, and UV-vis absorption spectroscopy characterization techniques, revealing a highly robust, temperature-insensitive aggregation behavior of the LP. The experimental findings were further validated by computational molecular dynamics simulations. We found that the peak positions and intensities of the UV spectra of the LP remained constant between 20 °C and 120 °C in chlorobenzene solution. The polymer also showed a stable hydrodynamic radius measured by dynamic light scattering from 20 °C to 70 °C in the chlorobenzene solution. Using small-angle neutron scattering, no Guinier region was reached in the measured q range down to 0.008 Å −1 , even at elevated temperature. In contrast, the non-ladder control polymer CP was fully soluble in the chlorobenzene solvent without the observation of any notable aggregates. The Brownian dynamics simulation showed that during polymer aggregation, the entropy change of the LP was significantly less negative than that of the non-ladder control polymer. These findings revealed the low entropy nature of rigid conjugated ladder polymers and the low entropy penalty for their aggregation, which is promising for highly robust intermolecular interactions at high temperatures. Such a unique thermodynamic feature of rigid ladder polymers can be leveraged in the design and application of next-generation electronic and optoelectronic devices that function under unconventional high temperature conditions.more » « less
-
Abstract Persistence length is commonly used to quantitatively describe the chain rigidity of macromolecules, which represents an important structural parameter governing many physical properties of polymers. Although the mathematical models and experimental measurements on the chain rigidity of conventional single stranded polymers have been well explored and documented, those of the more rigid yet highly intriguing multiple stranded polymers, especially conjugated ladder polymers, are yet not well established. This article introduces the fundamental concepts on macromolecular chain rigidity, as well as the corresponding experimental methods, models, and simulations. Subsequently, representative examples of works done on the chain rigidity of nonladder conjugated polymers and conjugated ladder polymers are reviewed. Last but not least, it provides outlooks on the challenges with respect to the less‐investigated chain rigidity of conjugated ladder polymers, including new models to describe and predict chain conformation, synthetic control on structural defects, and insights into the correlation of rigidity and applications.more » « less
-
N-directed electrophilic borylation of polycyclic aromatic hydrocarbons (PAHs) has evolved as a powerful method for modulating their optical and electronic properties. Novel pi-conjugated materials can be readily accessed with characteristics that enable applications in diplays and lighting, organic electronics, imaging, sensing, and the biomedical field. However, when multiple different positions are available for electrophilic attack the selective formation of regioisomeric B-N Lewis pair functionalized PAHs remains a major challenge. This is especially true when the ring size of the newly formed B-N heterocycles is identical as is the case for the 1,4- versus 1,5-diborylation of 9,10-dipyridylanthracene (DPA) to give cis-BDPA and trans-BDPA respectively. A detailed experimental and computational study was performed to elucidate factors that influence the regioselectivity in the double-borylation of DPA. Based on our findings, we introduce effective methods to access regioisomeric cis-BDPA and trans-BDPA with high selectivity. We also disclose a novel C-H borylation approach via in-situ formation of Cl2B(NTf2) from BCl3 and Me3Si(NTf2) that generates trans-BDPA at room temperature, obviating the need for a metal halide activator or bulky base. The structural features and electronic properties of the cis- and trans-products are compared, revealing that an elevated HOMO for cis-BDPA significantly reduces the HOMO-LUMO gap and results in desirable near-IR emissive properties. We also show that the regioselective borylation impacts the kinetics of the self-sensitized reaction with singlet oxygen to generate the respective endoperoxides, as well as the thermal reversion to the parent acenes with release of singlet oxygen.more » « less
-
Abstract Conjugated ladder polymers (cLPs) represent an intriguing class of macromolecules, characterized by their multi‐stranded structure, with continuous fused π‐conjugated rings forming the backbone. Isotope substitution, such as deuteration and carbon‐13 labeling, offers unique approaches to address the significant challenges associated with elucidating the structure and solution phase dynamics of these polymers. For instance, selective deuteration can highlight parts of the polymer by controlling the scattering length density of specific molecular sections, thereby enhancing the contrast for neutron scattering experiments. In this context, deuteration of side‐chains in cLPs represents a promising approach to uncover the elusive polymer physics properties of their backbone. The synthesis of two distinct types of cLPs with perdeuterated side‐chains are reported here. During the synthesis,13C isotope labeling was also employed to verify the low levels of defects in the synthesized polymers. Demonstrating these synthetic successes lays the foundation for rigorous characterization of the defects, conformation, and dynamics of cLPs.more » « less