Statics is a core course taken by undergraduate mechanical engineers in their freshmen or sophomore years. The course involves characterizing structures that remain still (static) under load. Statics concepts traditionally build in complexity from isolated particles, then to rigid bodies, and finally to structures formed by multiple rigid bodies. Structural analysis, otherwise known as “frames and machines,” is thus one of the more complex topics covered in Statics because it integrates prior knowledge of particle and rigid body equilibrium with new concepts like two-force members and internal loads. Traditionally, students become proficient in structural analysis by solving textbook problems where implicitly or explicitly, these problems classify the structure as either a “frame” or a “machine.” This classification in problem wording hints at the solution method and typically requires students to calculate the loads at a particular connector or cross section at risk of failure, thus reducing opportunities for structural analysis before computation. In actual practice, structural analysis is less straightforward; engineers must thoughtfully examine the structure to determine the best method of analysis and likely failure location(s). Prior studies have introduced project-based learning (PBL) experiences for Statics courses that involve more realistic open-ended design, analysis, and validation. However, the prototyping component of these studies often falls short of actual practice by limiting students to scale model designs in craft grade materials, e.g., table-top sized bridges constructed from balsa wood. While economical and logistically simplistic, scale model designs do not reinforce industry-relevant design and fabrication skills, e.g., CAD/CAM and shop skills. Furthermore, scale models cannot be subjected to realistic loading conditions, which disconnects the analysis and validation portions of the project from actual engineering practice. In this study, we introduce a novel PBL exercise – the Wooden Bike Frame Challenge – for Statics courses that focuses on structural analysis and involves fabrication of a full-scale wooden bike frame using CAD/CAM techniques. The complete set of instructional materials, including problem statements, assignments, and rubrics, are included in this study for open-source use by other engineering educators. We evaluated the efficacy of this exercise in reinforcing students’ knowledge of statics concepts and previously acquired prototyping skills using a mixed-methods approach. Study subjects were sophomore year mechanical engineering students who were teamed (n=158 students in 37 teams). The effect of the PBL exercise on content knowledge was determined by comparing pre- and post-PBL solutions to structural analysis textbook problems, as well as the more open-ended structural analysis of the bike frame designs. Post-PBL, students individually completed a survey assessing their level of engagement with the analytical and design aspects of the PBL exercise and perceived value of the project. The Wooden Bike Frame Challenge demonstrates the value of embedding full-scale design experiences into core courses like Statics, not only for strengthening newly acquired knowledge like structural analysis, but also for reinforcing industry-standard design and fabrication skills from prior coursework.
more »
« less
A Pilot Program in Open-Ended Problem Solving and Project Management
This research is motivated by the need for students’ early exposure to work readiness skills that promote effectiveness in dealing with complex open-ended technical problems as may be encountered in senior capstone projects or professional practice. This paper presents preliminary work in the use of building Rube Goldberg machines as student projects to foster some of these skills. Design of Rube Goldberg machines may be employed in a number of settings as a vehicle for teaching basic engineering skills. These designs require students to creatively consider a variety of unconventional approaches to solve simple problems. The Rube Goldberg paradigm allows students to communicate and to advance their ideas in a low-pressure environment where brainstorming is highly valued and where prior technical expertise affords no specific advantage. As such, projects based on Rube Goldberg machines are an effective way for freshmen and sophomore students, who may lack extensive technical skills, to acquire greater proficiency in some of the non-technical skills. This research gives results from a pilot study in project management using the Rube Goldberg model. The goal of this study is to determine the perceived efficacy of a proposed teaching vehicle for project management concepts that could strengthen the early stages of an existing series of Project Based Learning (PBL) oriented undergraduate engineering courses at the host institution, which currently make use of more closed-ended and single-solution design projects. In the study, a cohort of 27 engineering and engineering technology students participated in a sequence of extracurricular sessions in which they undertook progressively challenging open-ended project assignments. Each project introduced new constraints that required the students to address additional aspects of project management. Results from an end-of-year survey show that the participants had strongly positive impressions of their experiences related to these exercises. A majority of students felt that they had enhanced skills that would be valuable in professional life (96%), improved their leadership skills (92%), and had gained appreciation for the value of project planning (100%) and technical documentation (96%). It is anticipated that lessons learned from the project sequence will provide the framework for cross-disciplinary freshman and sophomore assignments in host institution’s PBL curriculum in the future.
more »
« less
- Award ID(s):
- 1355872
- PAR ID:
- 10067334
- Date Published:
- Journal Name:
- American Society for Engineering Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to communicate technical information in written, graphical, and verbal formats is an essential durable skill for engineering students to develop as undergraduates and carry forward into the workplace. Employers have highlighted recent graduates’ inability to formulate tight, cohesive arguments for their engineering decisions, as well as difficulties adjusting their communication style for different audiences. Even though accreditation outcomes now explicitly include durable skills, such as “an ability to communicate effectively with a range of audiences,” prior research suggests that the field is still far from meeting industry expectations for proficiency in the varying modalities and styles of workplace communication. Laboratory courses are frequently relied upon to teach or reinforce writing and presentation skills. There are two major issues with this approach. First, in lab classes, the communication method is typically narrowly focused on reports that simulate writing for hypothesis-driven research projects, which fail to align with the design-based and project management aspects of professional engineering workloads. Second, lab courses that heavily emphasize technical communications frequently do so at the expense of technical knowledge, that is, the engineering concepts involved with the laboratory experiment. Many students already view communication skills as “soft” in comparison to technical knowledge; and this attitude affects their performance and retention. In this paper, we present the design and implementation of a stand-alone technical communications course that was specifically created for first-year mechanical engineering students and centered on multiple, industry-aligned modalities of communication. There are two major writing assignments in the course, both of which are open-ended “technical briefs” that involve background research, data analysis, and justification of an engineering decision for a design firm. For these major assignments, students individually submit a draft and receive detailed feedback for improvement before submitting the final versions. These two major assignments are scaffolded with weekly individual assignments that give students experience with a range of communication skills and modalities, e.g., using a reference manager and composing professional emails. To gauge the effectiveness of this stand-alone course in improving students’ technical communication skills, we conducted pre- and post-course surveys of all students enrolled in the course in 2023 (n=147), and we also tracked improvements in technical writing from draft to final form via established rubrics. Students demonstrated gains in self-efficacy for nearly all technical communication skills covered in the course as well as improved self-efficacy in different communication modalities, e.g., email, slide presentations, and executive summaries. The results of this evaluation suggest that a stand-alone, industry-centered technical communications course builds student competency with communication strategies used in the workplace. Future work will focus on whether students are able to transfer these skills into latter courses and ultimately their careers.more » « less
-
There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided.more » « less
-
A shortage in the science, technology, engineering, and mathematics (STEM) workforce has made it clear that STEM educators should adjust their teaching pedagogy to engage and retain students by improving student interest in STEM fields. Furthermore, in addition to discipline-based knowledge, students must learn the soft skills employers value to increase employability. Project-based learning (PBL), a student-centered teaching method in science labs, is a strategy that encourages students to create their projects while applying soft skills. This article demonstrates that integrating and implementing PBL in a biotechnology lab enhances knowledge and increases student retention and employment rates.more » « less
-
Capstone design courses, an established component of undergraduate engineering curricula, offer students the opportunity to synthesize their prior engineering coursework and apply professional and technical skills towards projects with practical application. During this unique experience, capstone faculty enable mentored exploration, coaching students to navigate the design process to complete complex and open-ended projects. However, each capstone scope of work requires project specific knowledge and skills that capstone students need to independently research and comprehend. Findings from our study of recent graduates during their first year on the job suggest that self-directed learning isn’t just occurring in the capstone experience, but it is also an essential skill in professional workplaces. In this paper we share data regarding participants’ experiences relying on self-directed learning while working on their capstone projects and later in post-graduation environments. We consider the ways that capstone design educators can design course content and mentor students to help promote this critical skill and conclude by offering recommendations.more » « less
An official website of the United States government

