skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Euclidean vector product for neural networks
We present a non-Euclidean vector product for artificial neural networks. The vector product operator does not require any multiplications while providing correlation information between two vectors. Ordinary neurons require inner product of two vectors. We propose a class of neural networks with the universal approximation property over the space of Lebesgue integrable functions based on the proposed non-Euclidean vector product. In this new network, the "product" of two real numbers is defined as the sum of their absolute values, with the sign determined by the sign of the product of the numbers. This "product" is used to construct a vector product in RN . The vector product induces the l1 norm. The additive neural network successfully solves the XOR problem. Experiments on MNIST and CIFAR datasets show that the classification performance of the proposed additive neural network is comparable to the corresponding multi-layer perceptron and convolutional neural networks.  more » « less
Award ID(s):
1739396
PAR ID:
10067379
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ICASSP proceedings
ISSN:
0736-7791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the “combine” function of size polynomial or even exponential in the number of graph nodes n, as well as feature vectors of length linear in n. We present an improved simulation of the WL test on GNNs with exponentially lower complexity. In particular, the neural network implementing the combine function in each node has only polylog(n) parameters, and the feature vectors exchanged by the nodes of GNN consists of only O(log n) bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction. 
    more » « less
  2. null (Ed.)
    We develop theoretical foundations of resonator networks, a new type of recurrent neural network introduced in Frady, Kent, Olshausen, and Sommer (2020), a companion article in this issue, to solve a high-dimensional vector factorization problem arising in Vector Symbolic Architectures. Given a composite vector formed by the Hadamard product between a discrete set of high-dimensional vectors, a resonator network can efficiently decompose the composite into these factors. We compare the performance of resonator networks against optimization-based methods, including Alternating Least Squares and several gradient-based algorithms, showing that resonator networks are superior in several important ways. This advantage is achieved by leveraging a combination of nonlinear dynamics and searching in superposition, by which estimates of the correct solution are formed from a weighted superposition of all possible solutions. While the alternative methods also search in superposition, the dynamics of resonator networks allow them to strike a more effective balance between exploring the solution space and exploiting local information to drive the network toward probable solutions. Resonator networks are not guaranteed to converge, but within a particular regime they almost always do. In exchange for relaxing the guarantee of global convergence, resonator networks are dramatically more effective at finding factorizations than all alternative approaches considered. 
    more » « less
  3. null (Ed.)
    Variable binding is a cornerstone of symbolic reasoning and cognition. But how binding can be implemented in connectionist models has puzzled neuroscientists, cognitive psychologists, and neural network researchers for many decades. One type of connectionist model that naturally includes a binding operation is vector symbolic architectures (VSAs). In contrast to other proposals for variable binding, the binding operation in VSAs is dimensionality-preserving, which enables representing complex hierarchical data structures, such as trees, while avoiding a combinatoric expansion of dimensionality. Classical VSAs encode symbols by dense randomized vectors, in which information is distributed throughout the entire neuron population. By contrast, in the brain, features are encoded more locally, by the activity of single neurons or small groups of neurons, often forming sparse vectors of neural activation. Following Laiho et al. (2015), we explore symbolic reasoning with a special case of sparse distributed representations. Using techniques from compressed sensing, we first show that variable binding in classical VSAs is mathematically equivalent to tensor product binding between sparse feature vectors, another well-known binding operation which increases dimensionality. This theoretical result motivates us to study two dimensionality-preserving binding methods that include a reduction of the tensor matrix into a single sparse vector. One binding method for general sparse vectors uses random projections, the other, block-local circular convolution, is defined for sparse vectors with block structure, sparse block-codes. Our experiments reveal that block-local circular convolution binding has ideal properties, whereas random projection based binding also works, but is lossy. We demonstrate in example applications that a VSA with block-local circular convolution and sparse block-codes reaches similar performance as classical VSAs. Finally, we discuss our results in the context of neuroscience and neural networks. 
    more » « less
  4. Abstract We demonstrate that the key components of cognitive architectures (declarative and procedural memory) and their key capabilities (learning, memory retrieval, probability judgment, and utility estimation) can be implemented as algebraic operations on vectors and tensors in a high‐dimensional space using a distributional semantics model. High‐dimensional vector spaces underlie the success of modern machine learning techniques based on deep learning. However, while neural networks have an impressive ability to process data to find patterns, they do not typically model high‐level cognition, and it is often unclear how they work. Symbolic cognitive architectures can capture the complexities of high‐level cognition and provide human‐readable, explainable models, but scale poorly to naturalistic, non‐symbolic, or big data. Vector‐symbolic architectures, where symbols are represented as vectors, bridge the gap between the two approaches. We posit that cognitive architectures, if implemented in a vector‐space model, represent a useful, explanatory model of the internal representations of otherwise opaque neural architectures. Our proposed model, Holographic Declarative Memory (HDM), is a vector‐space model based on distributional semantics. HDM accounts for primacy and recency effects in free recall, the fan effect in recognition, probability judgments, and human performance on an iterated decision task. HDM provides a flexible, scalable alternative to symbolic cognitive architectures at a level of description that bridges symbolic, quantum, and neural models of cognition. 
    more » « less
  5. null (Ed.)
    The ability to encode and manipulate data structures with distributed neural representations could qualitatively enhance the capabilities of traditional neural networks by supporting rule-based symbolic reasoning, a central property of cognition. Here we show how this may be accomplished within the framework of Vector Symbolic Architectures (VSAs) (Plate, 1991; Gayler, 1998; Kanerva, 1996), whereby data structures are encoded by combining high-dimensional vectors with operations that together form an algebra on the space of distributed representations. In particular, we propose an efficient solution to a hard combinatorial search problem that arises when decoding elements of a VSA data structure: the factorization of products of multiple codevectors. Our proposed algorithm, called a resonator network, is a new type of recurrent neural network that interleaves VSA multiplication operations and pattern completion. We show in two examples—parsing of a tree-like data structure and parsing of a visual scene—how the factorization problem arises and how the resonator network can solve it. More broadly, resonator networks open the possibility of applying VSAs to myriad artificial intelligence problems in real-world domains. The companion article in this issue (Kent, Frady, Sommer, & Olshausen, 2020) presents a rigorous analysis and evaluation of the performance of resonator networks, showing it outperforms alternative approaches. 
    more » « less