skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in Minecraft
Virtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality.  more » « less
Award ID(s):
1717937
PAR ID:
10067549
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Annual Symposium on Computer-Human Interaction in Play
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness. 
    more » « less
  2. null (Ed.)
    We study student experiences of social VR for remote instruction, with students attending class from home. The study evaluates student experiences when: (1) viewing remote lectures with VR headsets, (2) viewing with desktop displays, (3) presenting with VR headsets, and (4) reflecting on several weeks of VR-based class attendance. Students rated factors such as presence, social presence, simulator sickness, communication methods, avatar and application features, and tradeoffs with other remote approaches. Headset-based viewing and presenting produced higher presence than desktop viewing, but had less-clear impact on overall experience and on most social presence measures. We observed higher attentional allocation scores for headset-based presenting than for both viewing methods. For headset VR, there were strong negative correlations between simulator sickness (primarily reported as general discomfort) and ratings of co-presence, overall experience, and some other factors. This suggests that comfortable users experienced substantial benefits of headset viewing and presenting, but others did not. Based on the type of virtual environment, student ratings, and comments, reported discomfort appears related to physical ergonomic factors or technical problems. Desktop VR appears to be a good alternative for uncomfortable students, and students report that they prefer a mix of headset and desktop viewing. We additionally provide insight from students and a teacher about possible improvements for VR class technology, and we summarize student opinions comparing viewing and presenting in VR to other remote class technologies. 
    more » « less
  3. null (Ed.)
    Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex. 
    more » « less
  4. Cybersickness – discomfort caused by virtual reality (VR) – remains a significant problem that negatively affects the user experience. Research on individual differences in cybersickness has typically focused on overall sickness intensity, but a detailed understanding should include whether individuals differ in the relative intensity of cybersickness symptoms. This study used latent profile analysis (LPA) to explore whether there exist groups of individuals who experience common patterns of cybersickness symptoms. Participants played a VR game for up to 20 min. LPA indicated three groups with low, medium, and high overall cybersickness. Further, there were similarities and differences in relative patterns of nausea, disorientation, and oculomotor symptoms between groups. Disorientation was lower than nausea and oculomotor symptoms for all three groups. Nausea and oculomotor were experienced at similar levels within the high and low sickness groups, but the medium sickness group experienced more nausea than oculomotor. Characteristics of group members varied across groups, including gender, virtual reality experience, video game experience, and history of motion sickness. These findings identify distinct individual experiences in symptomology that go beyond overall sickness intensity, which could enable future interventions that target certain groups of individuals and specific symptoms. 
    more » « less
  5. The immersion of virtual reality (VR) can impact user perceptions in numerous forms, even racial bias and embodied experiences. These effects are often limited to head-mounted displays (HMDs) and other immersive technologies that may not be inclusive to the general population. This paper investigates racial bias and embodiment on a less immersive but more accessible medium: desktop VR. A population of participants (n = 158) participated in a desktop simulation where they embodied a virtual avatar and interacted with virtual humans to determine if desktop embodiment is induced and if there is a resulting effect on racial bias. Our results indicate that desktop embodiment can be induced at low levels, as measured by an embodiment questionnaire. Furthermore, one’s implicit bias may actually influence embodiment, and the experience and perceptions of a desktop VR simulation can be improved through embodied avatars. We discuss these findings and their implications in the context of stereotype activation and existing literature in embodiment. 
    more » « less