skip to main content

Title: Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in Minecraft
Virtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality.
Authors:
; ;
Award ID(s):
1717937
Publication Date:
NSF-PAR ID:
10067549
Journal Name:
Proceedings of the Annual Symposium on Computer-Human Interaction in Play
Sponsoring Org:
National Science Foundation
More Like this
  1. Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness.
  2. We study student experiences of social VR for remote instruction, with students attending class from home. The study evaluates student experiences when: (1) viewing remote lectures with VR headsets, (2) viewing with desktop displays, (3) presenting with VR headsets, and (4) reflecting on several weeks of VR-based class attendance. Students rated factors such as presence, social presence, simulator sickness, communication methods, avatar and application features, and tradeoffs with other remote approaches. Headset-based viewing and presenting produced higher presence than desktop viewing, but had less-clear impact on overall experience and on most social presence measures. We observed higher attentional allocation scores for headset-based presenting than for both viewing methods. For headset VR, there were strong negative correlations between simulator sickness (primarily reported as general discomfort) and ratings of co-presence, overall experience, and some other factors. This suggests that comfortable users experienced substantial benefits of headset viewing and presenting, but others did not. Based on the type of virtual environment, student ratings, and comments, reported discomfort appears related to physical ergonomic factors or technical problems. Desktop VR appears to be a good alternative for uncomfortable students, and students report that they prefer a mix of headset and desktop viewing. We additionally providemore »insight from students and a teacher about possible improvements for VR class technology, and we summarize student opinions comparing viewing and presenting in VR to other remote class technologies.« less
  3. Objective: To examine the hypothesis that constant speed is more comfortable than variable speed profiles and may minimize cybersickness. Background: Current best practices for virtual reality (VR) content creation suggest keeping any form of acceleration as short and infrequent as possible to mitigate cybersickness. Methods: In Experiment 1, participants experienced repetitions of simulated linear motion, and in Experiment 2, they experienced repetitions of a circular motion. Three speed profiles were tested in each experiment. Each trial lasted 2 min while standing. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and operationally defined in terms of total severity scores. Postural stability was measured using a Wii Balance Board and operationally defined in terms of center of pressure (COP) path length. Postural measures were decomposed into anterior-posterior and medial-lateral axes and subjected to detrended fluctuation analysis. Results: For both experiments, no significant differences were observed between the three speed profiles in terms of cybersickness or postural stability, and none of the baseline postural measures could predict SSQ scores for the speed profile conditions. An axis effect was observed in both experiments such that normalized COP movement was significantly greater along the anterior-posterior axis than the medial-lateral axis. Conclusion: Results showed nomore »convincing evidence to support the common belief that constant speed is more comfortable than variable speed profiles for scenarios typical of VR applications. Application: The present findings offer guidelines for the design of locomotion techniques involving traversal in VR environments.« less
  4. Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex.
  5. Like many natural sciences, a critical component of archaeology is field work. Despite its importance, field opportunities are available to few students for financial and logistical reasons. With little exposure to archaeological research, fewer students are entering archaeology, particularly minority students (Smith 2004; Wilson 2015). To counter these trends, we have leveraged the ongoing revolution in consumer electronics for the current, digitally-empowered generation by creating a game-based, virtual archaeology curriculum to 1) teach foundational principles of a discipline that is challenging to present in a traditional classroom by using sensory and cognitive immersion; and, 2) allow wider access to a field science that has previously been limited to only select students. Virtual reality (VR) is computer technology that creates a simulated three-dimensional world for a user to experience in a bodily way, thereby transforming data analysis into a sensory and cognitive experience. Using a widely-available, room-scale, VR platform, we have created a virtual archaeological excavation experience that conveys two overarching classroom objectives: 1) teach the physical methods of archaeological excavation by providing the setting and tools for a student to actively engage in field work; and, 2) teach archaeological concepts using a scientific approach to problem solving by couching themmore »within a role-playing game. The current prototype was developed with the HTC Vive VR platform, which includes a headset, hand controllers, and two base stations to track the position and orientation of the user’s head and hands within a 4x4 meter area. Environments were developed using Unreal Engine 4, an open source gaming engine, to maximize usability for different audiences, learning objectives, and skill levels. Given the inherent fun of games and widespread interest in archaeology and cultural heritage, the results of this research are adaptable and applicable to learners of all ages in formal and informal educational settings.« less