Fast algorithms for optimal multi-robot path planning are sought after in real-world applications. Known methods, however, generally do not simultaneously guar- antee good solution optimality and good (e.g., polynomial) running time. In this work, we develop a first low-polynomial running time algorithm, called SplitAndGroup (SaG), that solves the multi-robot path planning problem on grids and grid-like environments, and produces constant factor makespan optimal solutions on average over all problem in- stances. That is, SaG is an average case O(1)-approximation algorithm and computes solutions with sub-linear makespan. SaG is capable of handling cases when the density of robots is extremely high - in a graph-theoretic setting, the al- gorithm supports cases where all vertices of the underly- ing graph are occupied. SaG attains its desirable proper- ties through a careful combination of a novel divide-and- conquer technique, which we denote as global decoupling, and network flow based methods for routing the robots. Solutions from SaG, in a weaker sense, are also a constant factor approximation on total distance optimality.
more »
« less
SEAR: A Polynomial-Time Multi-Robot Path Planning Algorithm with Expected Constant-Factor Optimality Guarantee
We study the labeled multi-robot path planning problem in continuous 2D and 3D domains in the absence of obstacles where robots must not collide with each other. For an arbitrary number of robots in arbitrary initial and goal arrangements, we derive a polynomial time, complete algorithm that produces solutions with constant-factor optimality guarantees on both makespan and distance optimality, in expectation, under the assumption that the robot labels are uniformly randomly distributed. Our algorithm only requires a small constant-factor expansion of the initial and goal configuration footprints for solving the problem, i.e., the problem can be solved in a fairly small bounded region. Beside theoretical guarantees, we present a thorough computational evaluation of the proposed solution. In addition to the baseline implementation, adapting an effective (but non-polynomial time) routing subroutine, we also provide a highly efficient implementation that quickly computes near-optimal solutions. Hardware experiments on the microMVP platform composed of non-holonomic robots confirms the practical applicability of our algorithmic pipeline.
more »
« less
- Award ID(s):
- 1734419
- PAR ID:
- 10071651
- Date Published:
- Journal Name:
- 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fast algorithms for optimal multi-robot path planning are sought after in both research and real-world applications. Known methods, however, generally do not simultaneously guarantee good solution optimality and fast run time for difficult instances. In this work, we develop a low-polynomial running time algorithm, called SplitAndGroup, that solves the multi-robot path planning problem on grids and grid-like environments, and produces constant factor time- and distance-optimal solutions, in expectation. In particular, SplitAndGroup computes solutions with sub-linear makespan. SplitAndGroup is capable of handling cases when the density of robot is extremely high - in a graph-theoretic setting, the algorithm supports cases where all vertices of the underlying graph are occupied by robots. SplitAndGroup attains its desirable properties through a careful combination of divide-and-conquer technique and network flow based methods for routing the robots.more » « less
-
Let G = (V, E) be an m_1 \times \ldots \times m_k grid for some arbitrary constant k. We establish that O(\sum_{i=1}^km_i) (makespan) time-optimal labeled (i.e., each robot has a specific goal) multi-robot path planning can be realized on G in O(|V|^2) running time, even when vertices of G are fully occupied by robots. When all dimensions are of equal sizes, the running time approaches O(|V|). Using this base line algorithm, which provides average case O(1)-approximate (i.e., constant-factor) time-optimal solutions, we further develop a first worst case O(1)-approximate algorithm that again runs in O(|V|^2) time for two and three dimensions. We note that the problem has a worst case running time lower bound of \Omega(|V|^2).more » « less
-
Multi-Agent Path Finding (MAPF) is NP-hard to solve optimally, even on graphs, suggesting no polynomial-time algorithms can compute exact optimal solutions for them. This raises a natural question: How optimal can polynomial-time algorithms reach? Whereas algorithms for computing constant-factor optimal solutions have been developed, the constant factor is generally very large, limiting their application potential. In this work, among other breakthroughs, we propose the first low-polynomial-time MAPF algorithms delivering 1-1.5 (resp., 1-1.67) asymptotic makespan optimality guarantees for 2D (resp., 3D) grids for random instances at a very high 1/3 agent density, with high probability. Moreover, when regularly distributed obstacles are introduced, our methods experience no performance degradation. These methods generalize to support 100% agent density.Regardless of the dimensionality and density, our high-quality methods are enabled by a unique hierarchical integration of two key building blocks. At the higher level, we apply the labeled Grid Rearrangement Algorithm (GRA), capable of performing efficient reconfiguration on grids through row/column shuffles. At the lower level, we devise novel methods that efficiently simulate row/column shuffles returned by GRA. Our implementations of GRA-based algorithms are highly effective in extensive numerical evaluations, demonstrating excellent scalability compared to other SOTA methods. For example, in 3D settings, GRA-based algorithms readily scale to grids with over 370,000 vertices and over 120,000 agents and consistently achieve conservative makespan optimality approaching 1.5, as predicted by our theoretical analysis.more » « less
-
This paper studies a class of multi-robot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others’. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Simulations show the anytime property and increasing optimality of the proposed algorithm.more » « less
An official website of the United States government

