skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blind Cooperative Jamming: Exploiting ISI Heterogeneity to Achieve Positive Secure DoF
We investigate secure degrees of freedom (SDoF) of a single-input single-output (SISO) wiretap channel with a single helper without channel state information at the transmitters (CSIT). Wireless communication systems inherently suffer from intersymbol interference (ISI) due to channel dispersion. In this paper, we propose a novel blind cooperative jamming scheme that exploits the ISI heterogeneity to achieve positive SDoF, even without any CSIT. In order to achieve positive SDoF, the proposed approach only requires statistical properties of the ISI channel. In particular, we show that if LB is the effective ISI channel multipath link length towards the legitimate receiver (Bob) and LE is the link length towards the eavesdropper (Eve), a positive SDoF of LB-LE is achievable. To the best of our 2(LB -1) knowledge, this is the first work that exploits ISI link length heterogeneity to achieve positive secure degrees of freedom.  more » « less
Award ID(s):
1715947
PAR ID:
10071719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Global Communications Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the multiple-input multiple-output (MIMO) wiretap channel with intersymbol interference (ISI) in which a transmitter (Alice) wishes to securely communicate with a receiver (Bob) in presence of an eavesdropper (Eve). We focus on the practically relevant setting in which there is no channel state information (CSI) at Alice about either of the channels to Bob or Eve, except statistical information about the ISI channels (i.e., Alice only knows the effective number of ISI taps). The key contribution of this work is to show that even with no CSI at Alice, positive secure degrees of freedom (SDoF) are achievable by carefully exploiting a) the heterogeneity of the ISI links to Bob and Eve, and b) the relative number of antennas at all the three terminals. To this end, we propose a novel achievable scheme that carefully mixes information and artificial noise symbols in order to exploit ISI heterogeneity to achieve positive SDoF. To the best of our knowledge, this is the first work to explore the idea of exploiting ISI channel length heterogeneity to achieve positive SDoF for the MIMO wiretap channel with no CSI at the legitimate transmitter. 
    more » « less
  2. In this paper, the K-user interference channel with secrecy constraints is considered with delayed channel state information at transmitters (CSIT). We propose a novel secure retrospective interference alignment scheme in which the transmitters carefully mix information symbols with artificial noises to ensure confidentiality. Achieving positive secure degrees of freedom (SDoF) is challenging due to the delayed nature of CSIT, and the distributed nature of the transmitters. Our scheme works over two phases: Phase one, in which each transmitter sends information symbols mixed with artificial noises, and repeats such transmission over multiple rounds. In the next phase, each transmitter uses the delayed CSIT of the previous phase and sends a function of the net interference and artificial noises (generated in previous phase), which is simultaneously useful for all receivers. These phases are designed to ensure the decodability of the desired messages while satisfying the secrecy constraints. We present our achievable scheme for three models, namely: (1) K-user interference channel with confidential messages (IC-CM), and we show that 1 2 ( K - 6 ) SDoF is achievable; (2) K-user interference channel with an external eavesdropper (IC-EE); and 3) K-user IC with confidential messages and an external eavesdropper (IC-CM-EE). We show that for the K-user IC-EE, 1 2 ( K - 3 ) SDoF is achievable, and for the K-user IC-CM-EE, 1 2 ( K - 6 ) is achievable. To the best of our knowledge, this is the first result on the K-user interference channel with secrecy constrained models and delayed CSIT that achieves an SDoF which scales with K , square-root of number of users. 
    more » « less
  3. Abstract Flapping wings deform under both aerodynamic and inertial forces. However, many flapping wing fluid–structure interaction (FSI) models require significant computational resources which limit their effectiveness for high-dimensional parametric studies. Here, we present a simple bilaterally coupled FSI model for a wing subject to single-degree-of-freedom (SDOF) flapping. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. To verify the model experimentally, we construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum. Overall, the derived model estimates wing strain with good accuracy. In-vacuum, the wing has a large 3ω response when flapping at approximately one-third of its natural frequency due to a superharmonic resonance, where the superharmonic occurs due to the interaction of inertial forces and time-varying centrifugal softening. In-air, this 3ω response is attenuated significantly as a result of aerodynamic damping, whereas the primary ω response is increased due to aerodynamic loading. These results highlight the importance of (1) bilateral coupling between the fluid and structure, since unilaterally coupled approaches do not adequately describe deformation-induced aerodynamic damping and (2) time-varying stiffness, which generates superharmonics of the flapping frequency in the wing’s dynamic response. The simple SDOF model and experimental study presented in this work demonstrate the potential for a reduced-order FSI model that considers both bilateral fluid–structure coupling and realistic multi-degrees-of-freedom flapping kinematics moving forward. 
    more » « less
  4. null (Ed.)
    The broadcast channel may experience unequal link coherence times due to a number of factors including variation in node mobility or local scattering conditions. This means the block fading model for different links may have nonidentical block length, and the channel state information for the links may also not be identical. The faster the fading and the shorter the fading block length, the more often the link needs to be trained and estimated at the receiver, and the more likely that channel state information (CSI) is stale or unavailable at the transmitter. This paper investigates a MISO broadcast channel where some receivers experience longer coherence intervals and other receivers experience shorter coherence intervals and must estimate their receive-side CSI (CSIR) frequently. We consider a variety of transmit-side CSI (CSIT) conditions for the above mentioned model, including no CSIT, delayed CSIT, or hybrid CSIT. To investigate the degrees of freedom region, we employ interference alignment and beamforming along with a product superposition that allows simultaneous but noncontaminating transmission of pilots and data to different receivers. Outer bounds employ the extremal entropy inequality as well as a bounding of the performance of a discrete, memoryless, multiuser, multilevel broadcast channel. For several cases, inner and outer bounds are established that either partially meet, or the gap diminishes with increasing coherence time. 
    more » « less
  5. This paper studies MIMO relays with non-identical link coherence times, a frequently occurring condition when, e.g., the nodes in the relay channel do not all have the same mobility, or the scatterers around some nodes have different mobility compared with those around other nodes. Despite its practical relevance, this condition, known as coherence diversity, has not been studied in the relay channel. This paper studies the performance of MIMO relays and proposes efficient transmission strategies under coherence diversity. Since coherence times have a prominent impact on channel training, we do not assume channel state is available to the decoder for free; all channel training resources are accounted for in the calculations. A product superposition technique is employed at the source which allows a more efficient usage of degrees of freedom when the relay and the destination have different training requirements. Varying configurations of coherence times are studied. The interesting case where the different link coherence intervals are not a multiple of each other, and therefore the coherence intervals do not align, is studied. Relay scheduling is combined with the product superposition to obtain further gains in degrees of freedom. The impact of coherence diversity is further studied in the presence of multiple parallel relays. 
    more » « less