skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Malware Detection in Cloud Infrastructures using Convolutional Neural Networks
A major challenge in Infrastructure as a Service (IaaS) clouds is its exposure to malware. Malware can spread rapidly within a datacenter and can cause major disruption to a cloud service provider and its clients. This paper introduces and discusses an effective malware detection approach in cloud infrastructure using Convolutional Neural Network (CNN), a deep learning approach. We initially employ a standard 2d CNN by training on metadata available for each of the processes in a virtual machine (VM) obtained by means of the hypervisor. We enhance the CNN classifier accuracy by using a novel 3d CNN (where an input is a collection of samples over a time interval), which greatly helps reduce mislabelled samples during data collection and training. Our experiments are performed on data collected by running various malware (mostly Trojans and Rootkits) on VMs. The malware used in our experiments are randomly selected. This reduces the selection bias of known-to-be highly active malware for easy detection. We demonstrate that our 2d CNN model reaches an accuracy of ' 79%, and our 3d CNN model significantly improves the accuracy to ' 90%.  more » « less
Award ID(s):
1736209 1423481
PAR ID:
10072093
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
11th IEEE International Conference on Cloud Computing (CLOUD), San Francisco, CA, July 2-7, 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thanks to the numerous machine learning based malware detection (MLMD) research in recent years and the readily available online malware scanning system (e.g., VirusTotal), it becomes relatively easy to build a seemingly successful MLMD system using the following standard procedure: first prepare a set of ground truth data by checking with VirusTotal, then extract features from training dataset and build a machine learning detection model, and finally evaluate the model with a disjoint testing dataset. We argue that such evaluation methods do not expose the real utility of ML based malware detection in practice since the ML model is both built and tested on malware that are known at the time of training. The user could simply run them through VirusTotal just as how the researchers obtained the ground truth, instead of using the more sophisticated ML approach. However, ML based malware detection has the potential of identifying malware that has not been known at the time of training, which is the real value ML brings to this problem. We present experimentation study on how well a machine learning based malware detection system can achieve this. Our experiments showed that MLMD can consistently generate previously unknown malware knowledge, e.g., malware that is not detectable by existing malware detection systems at MLMD’s training time. Our research illustrates an ideal usage scenario for MLMD systems and demonstrates that such systems can benefit malware detection in practice. For example, by utilizing the new signals provided by the MLMD system and the detection capability of existing malware detection systems, we can more quickly uncover new malware variants or families. 
    more » « less
  2. In this paper we present Sniffer Faster R-CNN++, an efficient Camera-LiDAR late fusion network for low complexity and accurate object detection in autonomous driving scenarios. The proposed detection network architecture operates on output candidates of any 3D detector and proposals from regional proposal network of any 2D detector to generate final prediction results. In comparison to the single modality object detection approaches, fusion based methods in many instances suffer from dissimilar data integration difficulties. On one hand, fusion based network models are complicated in nature and on the other hand they require large computational overhead and resources, processing pipelines for training and inference specially, the early fusion and deep fusion approaches. As such, we devise a late fusion network that in-cooperates pre-trained, single-modality detectors without change, performing association only at the detection level. In addition to this, lidar based method fail to detect distant object due to its sparse nature so we devise proposal refinement algorithm to jointly optimize detection candidates and assist detection for distant objects. Extensive experiments on both the 3D and 2D detection benchmark of challenging KITTI dataset illustrate that our proposed network architecture significantly improves the detection accuracy, accelerating the detection speed. 
    more » « less
  3. Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions.In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches. 
    more » « less
  4. Since malware has caused serious damages and evolving threats to computer and Internet users, its detection is of great interest to both anti-malware industry and researchers. In recent years, machine learning-based systems have been successfully deployed in malware detection, in which different kinds of classifiers are built based on the training samples using different feature representations. Unfortunately, as classifiers become more widely deployed, the incentive for defeating them increases. In this paper, we explore the adversarial machine learning in malware detection. In particular, on the basis of a learning-based classifier with the input of Windows Application Programming Interface (API) calls extracted from the Portable Executable (PE) files, we present an effective evasion attack model (named EvnAttack) by considering different contributions of the features to the classification problem. To be resilient against the evasion attack, we further propose a secure-learning paradigm for malware detection (named SecDefender), which not only adopts classifier retraining technique but also introduces the security regularization term which considers the evasion cost of feature manipulations by attackers to enhance the system security. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed methods. 
    more » « less
  5. Most approaches to automatic facial action unit (AU) detection consider only spatial information and ignore AU dynamics. For humans, dynamics improves AU perception. Is same true for algorithms? To make use of AU dynamics, recent work in automated AU detection has proposed a sequential spatiotemporal approach: Model spatial information using a 2D CNN and then model temporal information using LSTM (Long-Short-Term Memory). Inspired by the experience of human FACS coders, we hypothesized that combining spatial and temporal information simultaneously would yield more powerful AU detection. To achieve this, we propose FACS3D-Net that simultaneously integrates 3D and 2D CNN. Evaluation was on the Expanded BP4D+ database of 200 participants. FACS3D-Net outperformed both 2D CNN and 2D CNN-LSTM approaches. Visualizations of learnt representations suggest that FACS3D-Net is consistent with the spatiotemporal dynamics attended to by human FACS coders. To the best of our knowledge, this is the first work to apply 3D CNN to the problem of AU detection. 
    more » « less