Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.
more »
« less
Deep Learning-Based Time-Series Analysis for Detecting Anomalies in Internet of Things
Anomaly detection in time-series data is an integral part in the context of the Internet of Things (IoT). In particular, with the advent of sophisticated deep and machine learning-based techniques, this line of research has attracted many researchers to develop more accurate anomaly detection algorithms. The problem itself has been a long-lasting challenging problem in security and especially in malware detection and data tampering. The advancement of the IoT paradigm as well as the increasing number of cyber attacks on the networks of the Internet of Things worldwide raises the concern of whether flexible and simple yet accurate anomaly detection techniques exist. In this paper, we investigate the performance of deep learning-based models including recurrent neural network-based Bidirectional LSTM (BI-LSTM), Long Short-Term Memory (LSTM), CNN-based Temporal Convolutional (TCN), and CuDNN-LSTM, which is a fast LSTM implementation supported by CuDNN. In particular, we assess the performance of these models with respect to accuracy and the training time needed to build such models. According to our experiment, using different timestamps (i.e., 15, 20, and 30 min), we observe that in terms of performance, the CuDNN-LSTM model outperforms other models, whereas in terms of training time, the TCN-based model is trained faster. We report the results of experiments in comparing these four models with various look-back values.
more »
« less
- Award ID(s):
- 1821560
- PAR ID:
- 10387653
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 11
- Issue:
- 19
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 3205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cyber attacks continue to pose significant threats to individuals and organizations, stealing sensitive data such as personally identifiable information, financial information, and login credentials. Hence, detecting malicious websites before they cause any harm is critical to preventing fraud and monetary loss. To address the increasing number of phishing attacks, protective mechanisms must be highly responsive, adaptive, and scalable. Fortunately, advances in the field of machine learning, coupled with access to vast amounts of data, have led to the adoption of various deep learning models for timely detection of these cyber crimes. This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM where URLs of the phishing websites are treated as a sequence. The results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.more » « less
-
The internet of Things (IoT) refers to a network of physical objects that are equipped with sensors, software, and other technologies in order to communicate with other devices and systems over the internet. IoT has emerged as one of the most important technologies of this century over the past few years. To ensure IoT systems' sustainability and security over the long term, several researchers lately motivated the need to incorporate the recently proposed zero trust (ZT) cybersecurity paradigm when designing and implementing access control models for IoT systems. This poster proposes a hybrid access control approach incorporating traditional and deep learning-based authorization techniques toward score-based ZT authorization for IoT systems.more » « less
-
The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: Complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this article, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network . We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices and implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.more » « less
-
Abstract Health monitoring of civil infrastructures is a key application of Internet of things (IoT), while edge computing is an important component of IoT. In this context, swarms of autonomous inspection robots, which can replace current manual inspections, are examples of edge devices. Incorporation of pretrained deep learning algorithms into these robots for autonomous damage detection is a challenging problem since these devices are typically limited in computing and memory resources. This study introduces a solution based on network pruning using Taylor expansion to utilize pretrained deep convolutional neural networks for efficient edge computing and incorporation into inspection robots. Results from comprehensive experiments on two pretrained networks (i.e., VGG16 and ResNet18) and two types of prevalent surface defects (i.e., crack and corrosion) are presented and discussed in detail with respect to performance, memory demands, and the inference time for damage detection. It is shown that the proposed approach significantly enhances resource efficiency without decreasing damage detection performance.more » « less
An official website of the United States government

