skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trustworthiness in designing cyber-physical systems
Cyber-physical systems (CPS) provide unique functions of data collection, processing, communication, and control. The advanced capabilities and functions of CPS rely on their highly networked working environment and deep interdependency. The effectiveness of their performance critically depends on what and how they share among each other. Designing a trustworthy network that CPS can work together collaboratively thus is important. In order to design trustable CPS products, quantitative measures of trustworthiness are required. In this paper, quantitative metrics of trustworthiness, including capability, benevolence, and integrity, are proposed based on a new probabilistic graph model. The proposed metrics can be calculated from either subjective perception or objective information of network topology. A design optimization framework based on the trustworthiness metrics is also demonstrated.  more » « less
Award ID(s):
1663227
PAR ID:
10072430
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of 12th International Symposium on Tools and Methods of Competitive Engineering (TMCE2018)
Page Range / eLocation ID:
27-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cyber-physical-social systems (CPSS) with highly integrated functions of sensing, actuation, computation, and communication are becoming the mainstream consumer and commercial products. The performance of CPSS heavily relies on the information sharing between devices. Given the extensive data collection and sharing, security and privacy are of major concerns. Thus one major challenge of designing those CPSS is how to incorporate the perception of trust in product and systems design. Recently a trust quantification method was proposed to measure trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. In this paper, the applications of ability and benevolence metrics in design optimization of CPSS architecture are demonstrated. A Bayesian optimization method is developed to perform trust based CPSS network design, where the most trustworthy network with respect to a reference node can be selected to collaborate and share information with. 
    more » « less
  2. null (Ed.)
    Abstract Cyber–physical–social systems (CPSS) with highly integrated functions of sensing, actuation, computation, and communication are becoming the mainstream consumer and commercial products. The performance of CPSS heavily relies on the information sharing between devices. Given the extensive data collection and sharing, security and privacy are of major concerns. Thus, one major challenge of designing those CPSS is how to incorporate the perception of trust in product and systems design. Recently, a trust quantification method was proposed to measure the trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. The CPSS network architecture can be optimized by choosing a subnet such that the trust metrics are maximized. The combinatorial network optimization problem, however, is computationally challenging. Most of the available global optimization algorithms for solving such problems are heuristic methods. In this paper, a surrogate-based discrete Bayesian optimization method is developed to perform network design, where the most trustworthy CPSS network with respect to a reference node is formed to collaborate and share information with. The applications of ability and benevolence metrics in design optimization of CPSS architecture are demonstrated. 
    more » « less
  3. Cyber-physical systems (CPS) extensively share information with each other, work collaboratively over Internet of Things, and seamlessly integrated with human society. Designing CPS requires the new consideration of design for connectivity where security, privacy, and trust are of the main concerns. Particularly trust can affect system behavior in a networked environment. In this paper, trustworthiness is quantitatively measured by the perceptions of ability, benevolence, and integrity. Ability indicates the capabilities of sensing, reasoning, and influence in a society. Benevolence measures the genuineness of intention and reciprocity in information exchange. Integrity captures the system predictability and dependability. With these criteria, trust-based CPS network design and optimization are demonstrated. 
    more » « less
  4. null (Ed.)
    This paper presents a framework for reasoning about trustworthiness in cyber-physical systems (CPS) that combines ontology-based reasoning and answer set programming (ASP). It introduces a formal definition of CPS and several problems related to trustworthiness of a CPS such as the problem of identification of the most vulnerable components of the system and of computing a strategy for mitigating an issue. It then shows how a combination of ontology based reasoning and ASP can be used to address the aforementioned problems. The paper concludes with a discussion of the potentials of the proposed methodologies. 
    more » « less
  5. This paper presents a framework for reasoning about trustworthiness in cyber-physical systems (CPS) that combines ontology-based reasoning and answer set programming (ASP). It introduces a formal definition of CPS and several problems related to trustworthiness of a CPS such as the problem of identification of the most vulnerable components of the system and of computing a strategy for mitigating an issue. It then shows how a combination of ontology based reasoning and ASP can be used to address the aforementioned problems. The paper concludes with a discussion of the potentials of the proposed methodologies. 
    more » « less