Computing the Fréchet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fréchet distance computations become easier. Let [Formula: see text] and [Formula: see text] be two polygonal curves in [Formula: see text] with [Formula: see text] and [Formula: see text] vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fréchet distance between them: (1) a linear-time algorithm for deciding the Fréchet distance between two curves, (2) an algorithm that computes the Fréchet distance in [Formula: see text] time, (3) a linear-time [Formula: see text]-approximation algorithm, and (4) a data structure that supports [Formula: see text]-time decision queries, where [Formula: see text] is the number of vertices of the query curve and [Formula: see text] the number of vertices of the preprocessed curve.
more »
« less
Fast Fréchet Distance for Curves with Long Edges
Computing Fréchet distance between two curves takes roughly quadratic time. The only strongly subquadratic time algorithm has been proposed in [7] for c-packed curves. In this paper, we show that for curves with long edges the Fréchet distance computations become easier. Let P and Q be two polygonal curves in Rd with n and m vertices, respectively. We prove three main results for the case when all edges of both curves are long compared to the Fréchet distance between them: (1) a linear-time algorithm for deciding the Fréchet distance between two curves, (2) an algorithm that computes the Fréchet distance in O((n + m) log(n + m)) time, and (3) a linear-time [EQUATION]-approximation algorithm for approximating the Fréchet distance between two curves.
more »
« less
- Award ID(s):
- 1637576
- NSF-PAR ID:
- 10072476
- Date Published:
- Journal Name:
- 3rd International Workshop on Interactive and Spatial Computing
- Page Range / eLocation ID:
- 52-58
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete [ 5 ] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models. On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/δ is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We also show a near-linear-time 3-approximation for the decision problem on roughly δ-separated convex regions. Finally, we study the setting with Sakoe–Chiba time bands, where we restrict the alignment between the curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous Fréchet distance for uncertainty modelled as point sets.more » « less
-
We study subtrajectory clustering under the Fréchet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve P with n vertices in fixed dimension, integers k, ℓ ≥ 1, and a real value Δ > 0, the goal is to find k center curves of complexity at most ℓ such that every point on P is covered by a subtrajectory that has small Fréchet distance to one of the k center curves (≤ Δ). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter ℓ. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters k, ℓ, and Δ, then our algorithm finds a set of k' center curves of complexity at most ℓ with covering radius Δ' with k' in O(kℓ2 log (kℓ)), and Δ' ≤ 19Δ. Moreover, within these approximation bounds, we can minimize k while keeping the other parameters fixed. If ℓ is a constant independent of n, then, the approximation factor for the number of clusters k is O(log k) and the approximation factor for the radius Δ is constant. In this case, the algorithm has expected running time in Õ(km2 + mn) and uses space in O(n + m), where m=⌈L/Δ⌉ and L is the total arclength of the curve P.more » « less
-
In this paper we define and investigate the Fréchet edit distance problem. Here, given two polygonal curves $\pi$ and $\sigma$ and a threshhold value $\delta$ , we seek the minimum number of edits to $\sigma$ such that the Fréchet distance between the edited curve and $\pi$ is at most $\delta$. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants.more » « less
-
Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)We define and investigate the Fréchet edit distance problem. Given two polygonal curves π and σ and a non-negative threshhold value δ, we seek the minimum number of edits to σ such that the Fréchet distance between the edited σ and π is at most δ. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants.more » « less