Block polymers show promise as solid-state battery electrolytes due to the optimization of conductive and mechanical properties enabled via tuning of block chemistry and length. We investigate a polystyrene-block-poly(oligo-oxyethylene methacrylate) (PS-b-POEM) electrolyte doped with various lithium salts to investigate the role of molecular structure on ion transport properties and on local ion dynamics and associations. Anion charge becomes more delocalized with increasing size, reducing the coupling between salt ions while increasing coupling between ion and polymer chain motions and creating a more mobile overall environment. We observe support for this ion-polymer coupling via 1H, 7Li and 19F NMR spectroscopy, from which we obtain ion-specific mobility transition temperatures that differ from the polymer glass transition temperature. We also note faster transport and weaker local energetic interactions with anion size using temperature-dependent NMR diffusometry. 1H NMR spectroscopy further elucidates polymer chain dynamics and enables quantification of the temperature-dependent fraction of the conducting block that is immobile near the PS-POEM domain interface. NMR thus represents a species-specific and timescale-specific platform to quantify phase and interface behavior, and to correlate ion-specific transport with polymer chain dynamics.
more »
« less
Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes
We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.
more »
« less
- Award ID(s):
- 1721512
- PAR ID:
- 10072540
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 13
- Issue:
- 42
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7793 to 7803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO–NHC), hydrophobic polystyrene (PS–NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS–NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS–NHC and PEO- b -PS–NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO–NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.more » « less
-
Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4–6 D 0 ) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS- b -PLA bottle b rush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30–100 lamellar periods, with the sharpness of the orientation gradient decreasing substantially with increasing film thickness. This observation suggests a competition between growth of aligned, heterogeneously nucleated, grains at the surface and orientationally isotropic, homogeneously nucleated, grains throughout the bulk. This work demonstrates the high potential of bottlebrush block copolymers in rapid fabrication workflows and provides a point of comparison for future application of directed self-assembly to BBCP ordering.more » « less
-
The design of safe and high-performance, nanostructured, block polymer (BP) electrolytes for lithium-ion batteries requires a thorough understanding of the key parameters that govern local structure and dynamics. Yet, the interfaces between microphase-separated domains can introduce complexities in this local behavior that can be challenging to quantify. Herein, the local polymer, cation (Li+), and anion dynamics were described in salt-doped polystyrene-block-poly(oligo-oxyethylene methyl ether methacrylate) (PS-b-POEM) through a quantitative framework that considered the effects of polymer architecture, segmental mixing, chain stretching, and confinement on polymer mobility and ion transport. This framework was validated through nuclear magnetic resonance (NMR) spectroscopy measurements on solid (dry) polymer electrolyte samples. Notably, a mobility transition temperature (Tmobility) was identified through NMR spectroscopy that captured the local dynamics more accurately than the thermal glass transition temperature. Additionally, the approach quantitatively described the mobility gradient across a domain when segmental mixing effects were combined with chain stretching and confinement information, especially at higher segregation strengths – facilitating the assessment of local ion diffusion and conductivity. Spatially averaged local ion diffusion predictions quantitatively matched NMR-measured ion diffusivities in the BP samples, while spatially summed ionic conductivity predictions across a domain qualitatively captured trends in the measured ionic conductivities.more » « less
-
ABSTRACT Ternary block copolymer (BCP)‐homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application‐specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φHP) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasingφHP, the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration , and macrophase separation with further HP addition. Simulation results matched experimental values for and lamellar swelling as a function of HP to BCP chain length ratio,α = NHP/NBCP. Structural analysis of blends with fixedφHPbut varyingαconfirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending onα. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP‐HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 794–803more » « less
An official website of the United States government

