skip to main content


Title: SMC: Satisfiability Modulo Convex Programming
The design of cyber-physical systems (CPSs) requires methods and tools that can efficiently reason about the interaction between discrete models, e.g., representing the behaviors of ``cyber'' components, and continuous models of physical processes. Boolean methods such as satisfiability (SAT) solving are successful in tackling large combinatorial search problems for the design and verification of hardware and software components. On the other hand, problems in control, communications, signal processing, and machine learning often rely on convex programming as a powerful solution engine. However, despite their strengths, neither approach would work in isolation for CPSs. In this paper, we present a new satisfiability modulo convex programming (SMC) framework that integrates SAT solving and convex optimization to efficiently reason about Boolean and convex constraints at the same time. We exploit the properties of a class of logic formulas over Boolean and nonlinear real predicates, termed monotone satisfiability modulo convex formulas, whose satisfiability can be checked via a finite number of convex programs. Following the lazy satisfiability modulo theory (SMT) paradigm, we develop a new decision procedure for monotone SMC formulas, which coordinates SAT solving and convex programming to provide a satisfying assignment or determine that the formula is unsatisfiable. A key step in our coordination scheme is the efficient generation of succinct infeasibility proofs for inconsistent constraints that can support conflict-driven learning and accelerate the search. We demonstrate our approach on different CPS design problems, including spacecraft docking mission control, robotic motion planning, and secure state estimation. We show that SMC can handle more complex problem instances than state-of-the-art alternative techniques based on SMT solving and mixed integer convex programming.  more » « less
Award ID(s):
1645824
NSF-PAR ID:
10072625
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE
ISSN:
0018-9219
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we introduce the Satisfiability Modulo Theory (SMT) attack on obfuscated circuits. The proposed attack is the superset of Satisfiability (SAT) attack, with many additional features. It uses one or more theory solvers in addition to its internal SAT solver. For this reason, it is capable of modeling far more complex behaviors and could formulate much stronger attacks. In this paper, we illustrate that the use of theory solvers enables the SMT to carry attacks that are not possible by SAT formulated attacks. As an example of its capabilities, we use the SMT attack to break a recent obfuscation scheme that uses key values to alter delay properties (setup and hold time) of a circuit to remain SAT hard. Considering that the logic delay is not a Boolean logical property, the targeted obfuscation mechanism is not breakable by a SAT attack. However, in this paper, we illustrate that the proposed SMT attack, by deploying a simple graph theory solver, can model and break this obfuscation scheme in few minutes. We describe how the SMT attack could be used in one of four different attack modes: (1) We explain how SMT attack could be reduced to a SAT attack, (2) how the SMT attack could be carried out in Eager, and (3) Lazy approach, and finally (4) we introduce the Accelerated SMT (AccSMT) attack that offers significant speed-up to SAT attack. Additionally, we explain how AccSMT attack could be used as an approximate attack when facing SMT-Hard obfuscation schemes. 
    more » « less
  2. In this paper, we introduce the Satisfiability Modulo Theory (SMT) attack on obfuscated circuits. The proposed attack is the superset of Satisfiability (SAT) attack, with many additional features. It uses one or more theory solvers in addition to its internal SAT solver. For this reason, it is capable of modeling far more complex behaviors and could formulate much stronger attacks. In this paper, we illustrate that the use of theory solvers enables the SMT to carry attacks that are not possible by SAT formulated attacks. As an example of its capabilities, we use the SMT attack to break a recent obfuscation scheme that uses key values to alter delay properties (setup and hold time) of a circuit to remain SAT hard. Considering that the logic delay is not a Boolean logical property, the targeted obfuscation mechanism is not breakable by a SAT attack. However, in this paper, we illustrate that the proposed SMT attack, by deploying a simple graph theory solver, can model and break this obfuscation scheme in few minutes. We describe how the SMT attack could be used in one of four different attack modes:(1) We explain how SMT attack could be reduced to a SAT attack,(2) how the SMT attack could be carried out in Eager, and (3) Lazy approach, and finally (4) we introduce the Accelerated SMT (AccSMT) attack that offers significant speed-up to SAT attack. Additionally, we explain how AccSMT attack could be used as an approximate attack when facing SMT-Hard obfuscation schemes. 
    more » « less
  3. To deploy knowledge-based systems in the real world, the challenge of knowledge acquisition must be addressed. Knowledge engineering by hand is a daunting task, so machine learning has been widely proposed as an alternative. However, machine learning has difficulty acquiring rules that feature the kind of exceptions that are prevalent in real-world knowledge. Moreover, it is conjectured to be impossible to reliably learn representations featuring a desirable level of expressiveness. Works by Khardon and Roth and by Juba proposed solutions to such problems by learning to reason directly, bypassing the intractable step of producing an explicit representation of the learned knowledge. These works focused on Boolean, propositional logics. In this work, we consider such implicit learning to reason for arithmetic theories, including logics considered with satisfiability modulo theory (SMT) solvers. We show that for standard fragments of linear arithmetic, we can learn to reason efficiently. These results are consequences of a more general finding: we show that there is an efficient reduction from the learning to reason problem for a logic to any sound and complete solver for that logic. 
    more » « less
  4. In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers. 
    more » « less
  5. Abstract

    With the slowdown of improvement in conventional von Neumann systems, increasing attention is paid to novel paradigms such as Ising machines. They have very different approach to solving combinatorial optimization problems. Ising machines have shown great potential in solving binary optimization problems like MaxCut. In this paper, we present an analysis of these systems in boolean satisfiability (SAT) problems. We demonstrate that, in the case of 3-SAT, a basic architecture fails to produce meaningful acceleration, largely due to the relentless progress made in conventional SAT solvers. Nevertheless, careful analysis attributes part of the failure to the lack of two important components: cubic interactions and efficient randomization heuristics. To overcome these limitations, we add proper architectural support for cubic interaction on a state-of-the-art Ising machine. More importantly, we propose a novel semantic-aware annealing schedule that makes the search-space navigation much more efficient than existing annealing heuristics. Using numerical simulations, we show that such an “Augmented” Ising Machine for SAT is projected to outperform state-of-the-art software-based, GPU-based and conventional hardware SAT solvers by orders of magnitude.

     
    more » « less