- Award ID(s):
- 1542465
- PAR ID:
- 10072626
- Date Published:
- Journal Name:
- Information systems education journal
- ISSN:
- 1545-679X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)With children spending more time online, personal data are stored on their devices making them susceptible to online risks. Exposing students to cybersecurity education at an early age is critical for raising awareness and knowledge. Yet access to cybersecurity education curricular materials that are engaging for young students is limited. In this work, we present interactive cybersecurity stories for students in grades 3-5 delivered through a commercial social robot. Through focus groups and interviews we subsequently investigated teachers’ views on using a social robot for cybersecurity education, interest in incorporating social robots in the classroom, and perceptions of the ways in which social robots can impact teaching practice and student learning. Findings indicated that teachers found the social robot engaging and expressed interest in using it in their classroom despite some concerns. Findings have implications for the design and implementation of cybersecurity curricula delivered through emerging technologies.more » « less
-
Social robots have recently been gaining attention in the education field. Given their capabilities, researchers can use social robots in various ways that support human-robot interactions. In this paper, we present an interactive cybersecurity education program to teach children about foundation cybersecurity concepts using a social robot. To create child-robot interactions in cybersecurity education, we devised three processes. First, in collaboration with practicing teachers we developed an interactive story to support student engagement and learning of cybersecurity concepts. Second, we prototyped animations for the story on the social robot. Third, we use a mixed-methods approach to pilot test our cybersecurity education program. Our research highlights the potential of social robot use in education, both for child-robot interaction and K-12 cybersecurity education.more » « less
-
As conversational AI apps such as Siri and Alexa become ubiquitous among children, the CS education community has begun leveraging this popularity as a potential opportunity to attract young learners to AI, CS, and STEM learning. However, teaching conversational AI to K-12 learners remains challenging and unexplored due in part to the abstract and complex nature of some conversational AI concepts, such as intents and training phrases. One promising approach to teaching complex topics in engaging ways is through unplugged activities, which have been shown to be highly effective in fostering CS conceptual understanding without using computers. Research efforts are underway toward developing unplugged activities for teaching AI, but few thus far have focused on conversational AI. This experience report describes the design and iterative refinement of a series of novel unplugged activities for a conversational AI summer camp for middle school learners. We discuss learner responses and lessons learned through our implementation of these unplugged activities. Our hope is that these insights support CS education researchers in making conversational AI learning more engaging and accessible to all learners.more » « less
-
Learning programming in early introductory classes is challenging for first year university students, and introducing parallel programming (PDC) in early classes along with traditional sequential programming is even more challenging. Unplugged activities may help alleviate some of the difficulties for students. Unplugged activities have been shown to increase student interest, and to enhance student understanding of CS programming concepts. We have used unplugged activities to teach PDC concepts before introducing parallel programming. Our experiences show that using unplugged activities to introduce the PDC concepts reduce the barrier to learn parallel programming.more » « less
-
Robots are a popular and engaging educational tool for teaching computational thinking, but they often have significant costs and limitations for classroom use. Switching to a simulated environment can eliminate many of these difficulties. By also providing students with a block-based programming environment, the barrier to entry can be further reduced. This paper presents a networked virtual robotics platform designed to create an environment which is highly accessible for novice students and their teachers alike, along with components of a curriculum designed to teach computational thinking skills through robotics programming challenges, including autonomous challenges and in-class competitions. Students access this platform through an extension of the same web interface used for programming their robots, which allows students to collaborate on code and view a shared simulated virtual space. Previously, this virtual robotics platform was used only to facilitate distance education. This paper demonstrates its use in an in-person class during the Spring 2022 semester, illustrating the affordances of a virtual robotics environment for face-to-face learning contexts as well. Students' computational thinking skills were evaluated with assessments both before and after the class, along with surveys and interviews given to determine their opinions and outlooks regarding computer science. The results show that students had a significant improvement in both attitudes and aptitudes.