Background: There are 4.9 million English Language Learners (ELLs) in the United States. Only 2% of educators are trained to support these vulnerable students. Social robots show promise for language acquisition and may provide valuable support for students, especially as we return to needing smaller classes due to COVID-19. While cultural responsiveness increases gains for ELLs, little is known about the design of culturally responsive child–robot interactions. Method: Therefore, using a participatory design approach, we conducted an exploratory study with 24 Spanish-speaking ELLs at a Pacific Northwest elementary school. As cultural informants, students participated in a 15-min, robot-led, small group story discussion followed by a post-interaction feedback session. We then conducted reflexive critiques with six ELL teachers who reviewed the group interactions to provide further interpretation on design feature possibilities and potential interactions with the robot. Results: Students found the social robot engaging, but many were hesitant to converse with the robot. During post-interaction dialogue students articulated the specific ways in which the social robot appearance and behavior could be modified to help them feel more comfortable. Teachers postulated that the social robot could be designed to engage students in peer-to-peer conversations. Teachers also recognized the ELLs verbosity when discussing their experiences with the robot and suggested such interactions could stimulate responsiveness from students. Conclusion: Cultural responsiveness is a key component to successful education in ELLs. However, integrating appropriate, cultural responsiveness into robot interactions may require participants as cultural informants to ensure the robot behaviors and interactions are situated in that educational community. Utilizing a participatory approach to engage ELLs in design decisions for social robots is a promising way to gather culturally responsive requirements to inform successful child–robot interactions.
more »
« less
Social robot teaches cybersecurity
Social robots have recently been gaining attention in the education field. Given their capabilities, researchers can use social robots in various ways that support human-robot interactions. In this paper, we present an interactive cybersecurity education program to teach children about foundation cybersecurity concepts using a social robot. To create child-robot interactions in cybersecurity education, we devised three processes. First, in collaboration with practicing teachers we developed an interactive story to support student engagement and learning of cybersecurity concepts. Second, we prototyped animations for the story on the social robot. Third, we use a mixed-methods approach to pilot test our cybersecurity education program. Our research highlights the potential of social robot use in education, both for child-robot interaction and K-12 cybersecurity education.
more »
« less
- Award ID(s):
- 1821794
- NSF-PAR ID:
- 10188011
- Date Published:
- Journal Name:
- Social robot teaches cybersecurity
- Page Range / eLocation ID:
- 199 to 204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With children spending more time online, personal data are stored on their devices making them susceptible to online risks. Exposing students to cybersecurity education at an early age is critical for raising awareness and knowledge. Yet access to cybersecurity education curricular materials that are engaging for young students is limited. In this work, we present interactive cybersecurity stories for students in grades 3-5 delivered through a commercial social robot. Through focus groups and interviews we subsequently investigated teachers’ views on using a social robot for cybersecurity education, interest in incorporating social robots in the classroom, and perceptions of the ways in which social robots can impact teaching practice and student learning. Findings indicated that teachers found the social robot engaging and expressed interest in using it in their classroom despite some concerns. Findings have implications for the design and implementation of cybersecurity curricula delivered through emerging technologies.more » « less
-
Robotics may be an ideal way to teach cybersecurity concepts to young students in the elementary classroom. Research shows robots can be an engaging experience and benefit learning in ways useful in other areas of education. Programming robots provides an ideal context for compelling demonstrations of cybersecurity concepts. Unplugged robotics activities benefit from the engaging aspect of robots but have the added advantage of bypassing hardware and making some concepts more transparent. Señor Robot is a gamified unplugged robotics activity modeled after some activities used before but specifically designed for cybersecurity education in the context of mathematics. The design and implementation of Señor Robot in a third-grade classroom is discussed along with observations and results of student assessments. Strengths and weaknesses of Señor Robot are examined and guide a proposed revision of the game called Frogbotics. An expanded instruction set and applicability to English language arts are considered along with ways to use Frogbotics to teach specific topics in cybersecurity. A website is provided as a dissemination point for materials developed in the study.more » « less
-
Personalized education technologies capable of delivering adaptive interventions could play an important role in addressing the needs of diverse young learners at a critical time of school readiness. We present an innovative personalized social robot learning companion system that utilizes children’s verbal and nonverbal affective cues to modulate their engagement and maximize their long-term learning gains. We propose an affective reinforcement learning approach to train a personalized policy for each student during an educational activity where a child and a robot tell stories to each other. Using the personalized policy, the robot selects stories that are optimized for each child’s engagement and linguistic skill progression. We recruited 67 bilingual and English language learners between the ages of 4–6 years old to participate in a between-subjects study to evaluate our system. Over a three-month deployment in schools, a unique storytelling policy was trained to deliver a personalized story curriculum for each child in the Personalized group. We compared their engagement and learning outcomes to a Non-personalized group with a fixed curriculum robot, and a baseline group that had no robot intervention. In the Personalization condition, our results show that the affective policy successfully personalized to each child to boost their engagement and outcomes with respect to learning and retaining more target words as well as using more target syntax structures as compared to children in the other groups.more » « less
-
Tele-operated social robots (telerobots) offer an innovative means of allowing children who are medically restricted to their homes (MRH) to return to their local schools and physical communities. Most commercially available telerobots have three foundational features that facilitate child–robot interaction: remote mobility, synchronous two-way vision capabilities, and synchronous two-way audio capabilities. We conducted a comparative analysis between the Toyota Human Support Robot (HSR) and commercially available telerobots, focusing on these foundational features. Children who used these robots and these features on a daily basis to attend school were asked to pilot the HSR in a simulated classroom for learning activities. As the HSR has three additional features that are not available on commercial telerobots: (1) pan-tilt camera, (2) mapping and autonomous navigation, and (3) robot arm and gripper for children to “reach” into remote environments, participants were also asked to evaluate the use of these features for learning experiences. To expand on earlier work on the use of telerobots by remote children, this study provides novel empirical findings on (1) the capabilities of the Toyota HSR for robot-mediated learning similar to commercially available telerobots and (2) the efficacy of novel HSR features (i.e., pan-tilt camera, autonomous navigation, robot arm/hand hardware) for future learning experiences. We found that among our participants, autonomous navigation and arm/gripper hardware were rated as highly valuable for social and learning activities.more » « less