Home networks lack the powerful security tools and trained personnel available in enterprise networks. This compli- cates efforts to address security risks in residential settings. While prior efforts explore outsourcing network traffic to cloud or cloudlet services, such an approach exposes that network traffic to a third party, which introduces privacy risks, particularly where traffic is decrypted (e.g., using Transport Layer Security Inspection (TLSI)). To enable security screening locally, home networks could introduce new physical hardware, but the capital and deployment costs may impede deployment. In this work, we explore a system to leverage existing available devices, such as smartphones, tablets and laptops, already inside a home network to create a platform for traffic inspection. This software-based solution avoids new hardware deployment and allows decryption of traffic without risk of new third parties. Our investigation compares on-router inspection of traffic with an approach using that same router to direct traffic through smartphones in the local network. Our performance evaluation shows that smartphone middleboxes can substantially increase the throughput of communication from around 10 Mbps in the on-router case to around 90 Mbps when smartphones are used. This approach increases CPU usage at the router by around 15%, with a 20% CPU usage increase on a smartphone (with single core processing). The network packet latency increases by about 120 milliseconds.
more »
« less
Mitigating Traffic Analysis Attack in Smartphones with Edge Network Assistance
With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.
more »
« less
- Award ID(s):
- 1722791
- PAR ID:
- 10072662
- Date Published:
- Journal Name:
- International Conference on Communications
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kim, JH.; Singh, M.; Khan, J.; Tiwary, U.S.; Sur, M.; Singh, D. (Ed.)Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user.more » « less
-
Zero-click attacks exploit unpatched vulnerabilities in chat apps, such as WhatsApp and iMessage, enabling root access to the user’s device without their interaction, thereby posing a significant privacy risk. While Apple’s Lockdown mode and Samsung’s Message Guard implement virtual sandboxes, it is crucial to recognize that sophisticated zero-click exploits can potentially bypass the sandbox and compromise the device. This paper explores the feasibility of countering such attacks by shifting the attack surface to a virtual smartphone ecosystem, developed using readily available off-the-shelf components. Considering that zero-click attacks are inevitable, our cross-platform security system is strategically designed to substantially reduce the impact and duration of any potential successful attack. Our evaluation highlighted several trade-offs between security and usability. Moreover, we share insights to inspire further research on mitigating zero-click attacks on smartphones.more » « less
-
Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browsermore » « less
-
Mobile devices such as smartphones, laptops, and tablets can often connect to multiple access networks (e.g., Wi-Fi, LTE, and 5G) simultaneously. Recent advancements facilitate seamless integration of these connections below the transport layer, enhancing the experience for apps that lack inherent multi-path support. This optimization hinges on dynamically determining the traffic distribution across networks for each device, a process referred to as \textit{multi-access traffic splitting}. This paper introduces \textit{NetworkGym}, a high-fidelity network environment simulator that facilitates generating multiple network traffic flows and multi-access traffic splitting. This simulator facilitates training and evaluating different RL-based solutions for the multi-access traffic splitting problem. Our initial explorations demonstrate that the majority of existing state-of-the-art offline RL algorithms (e.g. CQL) fail to outperform certain hand-crafted heuristic policies on average. This illustrates the urgent need to evaluate offline RL algorithms against a broader range of benchmarks, rather than relying solely on popular ones such as D4RL. We also propose an extension to the TD3+BC algorithm, named Pessimistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art offline RL algorithms. PTD3's behavioral constraint mechanism, which relies on value-function pessimism, is theoretically motivated and relatively simple to implement.more » « less
An official website of the United States government

