With an increasing number of Internet of Things (IoT) devices present in homes, there is a rise in the number of potential infor- mation leakage channels and their associated security threats and privacy risks. Despite a long history of attacks on IoT devices in unprotected home networks, the problem of accurate, rapid detection and prevention of such attacks remains open. Many existing IoT protection solutions are cloud-based, sometimes ineffective, and might share consumer data with unknown third parties. This paper investigates the potential for effective IoT threat detection locally, on a home router, using AI tools combined with classic rule-based traffic-filtering algorithms. Our results show that with a slight rise of router hardware resources caused by machine learn- ing and traffic filtering logic, a typical home router instrumented with our solution is able to effectively detect risks and protect a typical home IoT network, equaling or outperforming existing popular solutions, with- out any effects on benign IoT functionality, and without relying on cloud services and third parties.
more »
« less
Inspecting Traffic in Residential Networks with Opportunistically Outsourced Middleboxes
Home networks lack the powerful security tools and trained personnel available in enterprise networks. This compli- cates efforts to address security risks in residential settings. While prior efforts explore outsourcing network traffic to cloud or cloudlet services, such an approach exposes that network traffic to a third party, which introduces privacy risks, particularly where traffic is decrypted (e.g., using Transport Layer Security Inspection (TLSI)). To enable security screening locally, home networks could introduce new physical hardware, but the capital and deployment costs may impede deployment.
In this work, we explore a system to leverage existing available devices, such as smartphones, tablets and laptops, already inside a home network to create a platform for traffic inspection. This software-based solution avoids new hardware deployment and allows decryption of traffic without risk of new third parties. Our investigation compares on-router inspection of traffic with an approach using that same router to direct traffic through smartphones in the local network. Our performance evaluation shows that smartphone middleboxes can substantially increase the throughput of communication from around 10 Mbps in the on-router case to around 90 Mbps when smartphones are used. This approach increases CPU usage at the router by around 15%, with a 20% CPU usage increase on a smartphone (with single core processing). The network packet latency increases by about 120 milliseconds.
more »
« less
- Award ID(s):
- 1651540
- PAR ID:
- 10431054
- Date Published:
- Journal Name:
- IEEE/IFIP Network Operations and Management Symposium
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow.more » « less
-
With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.more » « less
-
null (Ed.)Emerging virtual and augmented reality applications are envisioned to significantly enhance user experiences. An important issue related to user experience is thermal management in smartphones widely adopted for virtual and augmented reality applications. Although smartphone overheating has been reported many times, a systematic measurement and analysis of their thermal behaviors is relatively scarce, especially for virtual and augmented reality applications. To address the issue, we build a temperature measurement and analysis framework for virtual and augmented reality applications using a robot, infrared cameras, and smartphones. Using the framework, we analyze a comprehensive set of data including the battery power consumption, smartphone surface temperature, and temperature of key hardware components, such as the battery, CPU, GPU, and WiFi module. When a 360◦ virtual reality video is streamed to a smartphone, the phone surface temperature reaches near 39◦C. Also, the temperature of the phone surface and its main hardware components generally increases till the end of our 20-minute experiments despite thermal control undertaken by smartphones, such as CPU/GPU frequency scaling. Our thermal analysis results of a popular AR game are even more serious: the battery power consumption frequently exceeds the thermal design power by 20–80%, while the peak battery, CPU, GPU, and WiFi module temperature exceeds 45, 70, 70, and 65◦C, respectivelymore » « less
-
null (Ed.)System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enable trusted NoC communication in the presence of potentially untrusted IPs. This paper makes three key contributions. (1) We model an HT in NoC router that activates misrouting of the packets to initiate denial of service, delay of service, and injection suppression. (2) We propose a dynamic shielding technique that isolates the identified HT infected IP. (3) We present a secure routing algorithm to bypass the HT infected NoC router. Experimental results on HT infected NoC demonstrate that the proposed method reduces effective average packet latency by 38% in real benchmarks and 48% in synthetic traffic patterns. Our method also increases throughput and reduces effective average deflected packet latency by 62% in real benchmarks and 97% in synthetic traffic patterns.more » « less