skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recyclable high-performance epoxy based on transesterification reaction
Self-healing thermoset epoxy based on dynamic covalent bond chemistry has been developed in the past several years, which warrants the creation of recyclable epoxy. However, the existing systems produce epoxy that has lower strength, stiffness, and glass transition temperature, making them unsuitable for load-bearing structures. In this study, we developed a new recyclable thermoset epoxy through solid form recycling. The epoxy has strength, stiffness, and glass transition temperature similar to those found in conventional thermoset epoxy. The effect of healing temperature, healing time, healing pressure, and powder size on the healing efficiency was experimentally investigated. It was found that the healing efficiency is as high as 88.1%, and the epoxy can be recycled more than one time.  more » « less
Award ID(s):
1736136
PAR ID:
10072721
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
J. Mater. Chem. A
Volume:
5
Issue:
40
ISSN:
2050-7488
Page Range / eLocation ID:
21505 to 21513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Self-healable and recyclable materials and electronics can improve the reliability and repairability and can reduce environmental pollution; therefore, they promise very broad applications. In this study, we investigated the self-healing performance of dynamic covalent thermoset polyimine and its nanocomposites based on the dynamic covalent chemistry. Heat press was applied to two laminating films of polyimine and its nanocomposites to induce self-healing. The effects of heat press time, temperature, and load on the interfacial shear strength of the rehealed films were investigated. The results showed that increasing the heat press time, temperature, and load can significantly improve the interfacial shear strength and thus the self-healing effect. For polyimine nanocomposites, increasing the heat press time, temperature, and load led to the improved electrical conductivity of the rehealed films. 
    more » « less
  2. Abstract This study investigates the effect of autoclave curing variables on the glass transition temperature of and the degree of cure and strength of epoxy film adhesive single lap joints (SLJs) under static tensile shear loading. Studied autoclave variables include the cure temperature, cure pressure, temperature, and pressure ramp rates on the glass transition temperature as well as the cure time duration. Test joints are made of Aluminum substrates that are autoclave-bonded using epoxy film adhesive (AF163-2k). For each variable combination of the autoclave process, the corresponding glass transition temperature of cured Epoxy film adhesive is obtained using Dynamic Mechanical Analysis (DMA-Q800). Test data are generated for both baseline joints [uncycled] as well as for joints that have been heat-cycled in an environmental chamber after initial autoclave bonding. Results show a strong correlation between the autoclave process variable combinations and the corresponding glass transition temperature bond strength, and the failure mode of test joints. 
    more » « less
  3. Externally bonded wet-layup carbon fiber-reinforced polymer (CFRP) strengthening systems are extensively used in concrete structures but have not found widespread use in deficient steel structures. To address the challenges of the adhesive bonding of wet-layup CFRP to steel substrates, this study investigated the effect of core–shell rubber (CSR) nanoparticles on the curing kinetics, glass transition temperature (Tg) and mechanical properties of ambient-cured epoxy/CSR blends. The effects of silane coupling agent and CSR on the adhesive bond properties of CFRP/steel joints were also investigated. The results indicate that CSR nanoparticles have a mild catalytic effect on the curing kinetics of epoxy under ambient conditions. The effect of CSR on the Tg of epoxy was negligible. Epoxy adhesives modified with 5 to 20%wt. of CSR nanoparticles were characterized with improved ductility over brittle neat epoxy; however, the addition of CSR nanoparticles reduced tensile strength and modulus of the adhesives. An up to 250% increase in the single-lap shear strength of CFRP/steel joints was accomplished in CSR-modified joints over neat epoxy adhesive joints. 
    more » « less
  4. In situ X-ray photon correlation spectroscopy (XPCS) was used to investigate the crosslinking kinetics of a two-component epoxy resin adhesive. The effect of external temperature on the crosslinking reaction was studied by subjecting the epoxy to different curing temperature profiles. The temporally resolved dynamics of fillers was tracked, which conveniently served as a probe of the internal dynamics of the thermoset network and allowed us to study the crosslinking process. The epoxy resins showed different relaxation processes depending on temperature, indicating a complex relationship between applied temperature and the development of stress/relaxation conditions related to the formation of the thermoset network and subsequent vitrification process. The epoxy was found to be highly temperature sensitive, with heating to elevated temperatures promoting gelation, but the vitrification process was not completed during the isothermal curing stage. Instead, cooling the sample to room temperature facilitated the final vitrification process. Finally, this paper contextualizes the results of this epoxy system within the broader field of XPCS on complex polymer systems and further advocates for XPCS as a fundamental technique for the study of complex polymers. 
    more » « less
  5. Engineering applications of current thermoset shape memory polymers are limited by three critical issues: demanding fabrication conditions (from 70 to 300 °C temperatures for hours or days), lack of reprocessability or recyclability, and low recovery stress and energy output. To address these problems simultaneously, a new UV curable and vitrimer-based epoxy thermoset shape memory polymer (VSMP) has been synthesized. A 1.1 mm thick VSMP film can be readily cured at room temperature under UV-irradiation (61 mW cm −2 ) in just 80 s. It possesses 36.7 MPa tensile strength, 230 MPa compressive strength, and 3120 MPa modulus at room temperature. It still has a compressive strength of 187 MPa at 120 °C. The covalent adaptable network (CAN) imparts the VSMP with recyclability, as reflected by two effective recycling cycles (>60% recycling efficiency). In addition, the VSMP exhibits good shape memory properties for multiple shape recovery cycles. With 20% compression programming strain, up to 13.4 MPa stable recovery stress and 1.05 MJ m −3 energy output in the rubbery state are achieved. With good mechanical strength, thermal stability, recyclability, and excellent shape memory properties combined with in situ UV-curing capabilities, the new VSMP is a promising multifunctional thermoset for engineering applications. 
    more » « less