Transition metal nitrides such as titanium nitride (TiN) possess exceptional mechanical-, chemical-, and thermal-stability and have been utilized in a wide variety of applications ranging from super-hard, corrosion-resistive, and decorative coatings to nanoscale diffusion barriers in semiconductor devices. Despite the ongoing interest in these robust materials, there have been limited reports focused on engineering high-aspect ratio TiN-based nanocomposites with anisotropic magnetic and optical properties. To this end, we explored TiN–Fe thin films with self-assembled vertical structures integrated on Si substrates. We showed that the key physical properties of the individual components (e.g., ferromagnetism from Fe) are preserved, that vertical nanostructures promote anisotropic behavior, and interactions between TiN and Fe enable a special magneto-optical response. This TiN–Fe nanocomposite system presents a new group of complex multifunctional hybrid materials that can be integrated on Si for future Si-based memory, optical, and biocompatible devices.
more »
« less
Recent development of nanoimprint and nanoreplication and applications
Nanoimprinting has been applied in many micro- and nanoscale engineered devices; applications include displays, organic electronics, photovoltaics, optical films, and optoelectronics; and in some cases, direct imprinting of functional polymeric devices. Applications in the photonics area can significantly relieve the stringent requirement needed for nanoelectronics. We provide examples of structural colors and optical meta-surfaces facilitated by nanoimprinting, as well as plasmonic lithography masks that can produce deep-subwavelength structures using ordinary UV light. Inkjet printing has been widely used in many applications, but still faces challenges in pattern precision and feature variations. Combining Nanoimprint for patterning and inkjet printing for material deposition will take the advantage of what both technologies can offer, and can provide a high precision additive manufacturing process. We will show printed photonic devices, e.g. electro-optic polymer based optical modulators. To extend nanoimprinting to solid materials other than polymeric films will require innovative and non-conventional approaches. One such process is Metal-assisted chemical (Mac) imprint, which combines MacEtch and nanoiprint and enables direct MacEtch of Si substrate using a hybrid imprinting mold having noble metal mask. However, only low aspect ratio structures have been obtained because of the mass-transport limitation in the previous molds. Recently we effectively solved this problem by a using a specially made mold of Pt-coated anodized aluminum oxide (AAO) membrane, where the holes through the entire thickness drastically enhances the mass-transport. As a result, very high aspect ratio Si nanowires were achieved by MacImprint.
more »
« less
- Award ID(s):
- 1635636
- PAR ID:
- 10073059
- Date Published:
- Journal Name:
- The 62th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nanoimprinting of gold has the potential to make significant impact in the fabrication of miniaturized devices including optical devices, photonic crystals and biochemical sensors. The deformation behavior and recrystallization of gold structures has profound impact on the accurate replication of the imprinted pattern. An important step in the nanoimprint lithography (NIL) process is the cooling of the mold and resist assembly to room temperatures. The rate of cooling, commonly termed as quenching determines the final shape of the NIL features. Molecular dynamics simulations were implemented to study the nanoimprinting of gold substrates using a silicon mold. Simulations were conducted at room temperature (298 K), gold recrystallization (473K) and melting point (1000K) temperatures. The effect of different cooling rates (quenching) on the deformation behavior and spring back of gold was investigated. These include 0.01ns, 0.05ns, and 0.2ns time steps of quenching at 1fs per time step. The modified embedded atom method (MEAM) potential was used for the system molecules. Fast cooling at 298 K and 473 K whereas, intermediate cooling at 1000 K resulted in good pattern transfer. High fidelity nanoscale features were achieved with a gradient cooling proportional to the initial heating temperatures. The findings of this research provide insight on the effect of quenching in the material deformation and spring back during direct metal nanoimprinting.more » « less
-
Personalized healthcare (PHC) is a booming sector in the health science domain wherein researchers from diverse technical backgrounds are focusing on the need for remote human health monitoring. PHC employs wearable electronics, viz. group of sensors integrated on a flexible substrate, embedded in the clothes, or attached to the body via adhesive. PHC wearable flexible electronics (FE) offer numerous advantages including being versatile, comfortable, lightweight, flexible, and body conformable. However, finding the appropriate mass manufacturing technologies for these PHC devices is still a challenge. It needs an understanding of the physics, performance, and applications of printing technologies for PHC wearables, ink preparation, and bio-compatible device fabrication. Moreover, the detailed study of the operating principle, ink, and substrate materials of the printing technologies such as inkjet printing will help identify the opportunities and emerging challenges of applying them in manufacturing of PHC wearable devices. In this article, we attempt to bridge this gap by reviewing the printing technologies in the PHC domain, especially inkjet printing in depth. This article presents a brief review of the state-of-the-art wearable devices made by various printing methods and their applications in PHC. It focuses on the evaluation and application of these printing technologies for PHC wearable FE devices, along with advancements in ink preparation and bio-compatible device fabrication. The performance of inkjet, screen, gravure, and flexography printing, as well as the inks and substrates, are comparatively analyzed to aid PHC wearable sensor design, research, fabrication, and mass manufacturing. Moreover, it identifies the application of the emerging mass-customizable printing technologies, such as inkjet printing, in the manufacturing of PHC wearable devices, and reviews the printing principles, drop generation mechanisms, ink formulations, ink-substrate interactions, and matching strategies for printing wearable devices on stretchable substrates. Four surface matching strategies are extracted from literature for the guidance of inkjet printing of PHC stretchable electronics. The electro-mechanical performance of the PHC FE devices printed using four surface matching strategies is comparatively evaluated. Further, the article extends its review by describing the scalable integration of PHC devices and finally presents the future directions of research in printing technologies for PHC wearable devices.more » « less
-
Nguyen, Nam-Trung; Munoz, Rodrigo Alejandro; Kalinke, Cristiane (Ed.)Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm^3 chip) that will be attractive for many microfluidics labs.more » « less
-
Abstract Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
An official website of the United States government

