skip to main content

Title: TiN–Fe Vertically Aligned Nanocomposites Integrated on Silicon as a Multifunctional Platform toward Device Applications
Transition metal nitrides such as titanium nitride (TiN) possess exceptional mechanical-, chemical-, and thermal-stability and have been utilized in a wide variety of applications ranging from super-hard, corrosion-resistive, and decorative coatings to nanoscale diffusion barriers in semiconductor devices. Despite the ongoing interest in these robust materials, there have been limited reports focused on engineering high-aspect ratio TiN-based nanocomposites with anisotropic magnetic and optical properties. To this end, we explored TiN–Fe thin films with self-assembled vertical structures integrated on Si substrates. We showed that the key physical properties of the individual components (e.g., ferromagnetism from Fe) are preserved, that vertical nanostructures promote anisotropic behavior, and interactions between TiN and Fe enable a special magneto-optical response. This TiN–Fe nanocomposite system presents a new group of complex multifunctional hybrid materials that can be integrated on Si for future Si-based memory, optical, and biocompatible devices.
; ; ; ; ; ; ; ; ;
Award ID(s):
2016453 1809520 1565822
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories. In this work, an oxide–metal vertically aligned nanocomposite (VAN) platform has been used to successfully demonstrate self-assembled multiferroic BaTiO 3 –Fe (BTO–Fe) nanocomposite films with high structural anisotropy on Si substrates. The effects of various buffer layers on the crystallinity, microstructure, and physical properties of the BTO–Fe films have been explored. With an appropriate buffer layer design, e.g. SrTiO 3 /TiN bilayer buffer, the epitaxial quality of the BTO matrix and the anisotropy of the Fe nanopillars can be improved greatly, which in turn enhances the physical properties, including the ferromagnetic, ferroelectric, and optical response of the BTO–Fe thin films. This unique combination of properties integrated on Si offers a promising approach in the design of multifunctional nanocomposites for Si-based memories and optical devices.
  2. Abstract

    Integration of nanoscale photonic and plasmonic components on Si substrates is a critical step toward Si‐based integrated nanophotonic devices. In this work, a set of unique complex 3D metamaterials with intercalated nanolayered and nanopillar structures with tunable plasmonic and optical properties on Si substrates is designed. More specifically, the 3D metamaterials combine metal (Au) nanopillars and alternating metal‐nitride (Au‐TiN and Au‐TaN) nanolayers, epitaxially grown on Si substrates. The ultrafine Au nanopillars (d≈ 3 nm) continuously grow throughout all the nanolayers with high epitaxial quality. Novel optical properties, such as highly anisotropic optical property, high absorbance covering the entire visible spectrum regime, and hyperbolic property in the visible regime, are demonstrated. Furthermore, a waveguide based on a silicon nitride (Si3N4) ridge with a multilayer structure is successfully fabricated. The demonstration of 3D nanoscale metamaterial design integrated on Si opens up a new route toward tunable metamaterials nanostructure designs with versatile material selection for various optical components in Si integrated photonics.

  3. Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g. , hyperbolic optical properties. Herein, self-assembled HfO 2 -Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO 2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO 2 -Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO 2 , this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices.
  4. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator withmore »high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30.« less