skip to main content


Title: A review of inkjet printing technology for personalized-healthcare wearable devices
Personalized healthcare (PHC) is a booming sector in the health science domain wherein researchers from diverse technical backgrounds are focusing on the need for remote human health monitoring. PHC employs wearable electronics, viz. group of sensors integrated on a flexible substrate, embedded in the clothes, or attached to the body via adhesive. PHC wearable flexible electronics (FE) offer numerous advantages including being versatile, comfortable, lightweight, flexible, and body conformable. However, finding the appropriate mass manufacturing technologies for these PHC devices is still a challenge. It needs an understanding of the physics, performance, and applications of printing technologies for PHC wearables, ink preparation, and bio-compatible device fabrication. Moreover, the detailed study of the operating principle, ink, and substrate materials of the printing technologies such as inkjet printing will help identify the opportunities and emerging challenges of applying them in manufacturing of PHC wearable devices. In this article, we attempt to bridge this gap by reviewing the printing technologies in the PHC domain, especially inkjet printing in depth. This article presents a brief review of the state-of-the-art wearable devices made by various printing methods and their applications in PHC. It focuses on the evaluation and application of these printing technologies for PHC wearable FE devices, along with advancements in ink preparation and bio-compatible device fabrication. The performance of inkjet, screen, gravure, and flexography printing, as well as the inks and substrates, are comparatively analyzed to aid PHC wearable sensor design, research, fabrication, and mass manufacturing. Moreover, it identifies the application of the emerging mass-customizable printing technologies, such as inkjet printing, in the manufacturing of PHC wearable devices, and reviews the printing principles, drop generation mechanisms, ink formulations, ink-substrate interactions, and matching strategies for printing wearable devices on stretchable substrates. Four surface matching strategies are extracted from literature for the guidance of inkjet printing of PHC stretchable electronics. The electro-mechanical performance of the PHC FE devices printed using four surface matching strategies is comparatively evaluated. Further, the article extends its review by describing the scalable integration of PHC devices and finally presents the future directions of research in printing technologies for PHC wearable devices.  more » « less
Award ID(s):
1942185
NSF-PAR ID:
10396625
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
38
ISSN:
2050-7526
Page Range / eLocation ID:
14091 to 14115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  2. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less
  3. The economic production and integration of nanomaterial-based wearable energy storage devices with mechanically-compliable form factors and reliable performance will usher in exciting opportunities in emerging technologies such as consumer electronics, pervasive computing, human–machine interface, robotics, and the Internet of Things. Despite the increased interests and efforts in nanotechnology-enabled flexible energy storage devices, reducing the manufacturing and integration costs while continuously improving the performance at the device and system level remains a major technological challenge. The inkjet printing process has emerged as a potential economic method for nanomanufacturing printed electronics, sensors, and energy devices. Nevertheless, there have been few reports reviewing the scalable nanomanufacturing of inkjet printed wearable energy storage devices. To fill this gap, here we review the recent advances in inkjet printed flexible energy storage technologies. We will provide an in-depth discussion focusing on the materials, manufacturing process integration, and performance issues in designing and implementing the inkjet printing of wearable energy storage devices. We have also compiled a comprehensive list of the reported device technologies with the corresponding processing factors and performance metrics. Finally, we will discuss the challenges and opportunities associated with related topics. The rapid and exciting progress achieved in many emerging and traditional disciplines is expected to lead to more theoretical and experimental advances that would ultimately enable the scalable nanomanufacturing of inkjet printed wearable energy storage devices. 
    more » « less
  4. Abstract

    The growing demand for flexible and wearable hybrid electronics has triggered the need for advanced manufacturing techniques with versatile printing capabilities. Complex ink formulations, use of surfactants/contaminants, limited source materials, and the need for high‐temperature heat treatments for sintering are major issues facing the current inkjet and aerosol printing methods. Here, the nanomanufacturing of flexible hybrid electronics (FHE) by dry printing silver and indium tin oxide on flexible substrates using a novel laser‐based additive nanomanufacturing process is reported. The electrical resistance of the printed lines is tailored during the print process by tuning the geometry and structure of the printed samples. Different FHE designs are fabricated and tested to check the performance of the devices. Mechanical reliability tests including cycling, bending, and stretching confirm the expected performance of the printed samples under different strain levels. This transformative liquid‐free process allows the on‐demand formation and in situ laser crystallization of nanoparticles for printing pure materials for future flexible and wearable electronics and sensors.

     
    more » « less
  5. Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions. 
    more » « less