skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Low-Cost Wireless System Implementation for Interactive and Immersive Teaching
In recent years, virtual/augmented reality (VR/AR) technology has received great attention due to its capability of creating various levels of immersive experiences. However, current wireless VR/AR devices are quite expensive, which hinders its large-scale deployment in practice. In this demo, we present a wireless interactive VR/AR teaching system based on popular Android phones. In such a demo, when a teacher explains a 3D model, multiple students can see it from exactly the same perspective as the teacher does through VR/AR glasses. When one student has a concern or question regarding a particular part of the 3D model, he/she can point it out, and a corresponding blue cursor will appear on screens of all users. Moreover, in the absence of 3D models in Android phones, we broadcast 3D models based on their visual priorities.  more » « less
Award ID(s):
1717108
PAR ID:
10073230
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mobihoc '18 Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing
Page Range / eLocation ID:
322 to 323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the demonstration of CEIVE (Callee-only inference and verification), an effective and practical defense against caller ID spoofing. CEIVE is a victim callee only solution without requiring additional infrastructure support or changes on telephony systems; It is ready to deploy and easy to use. Given an incoming call, CEIVE leverages a callback session and its associated call signaling observed at the phone to infer the call state of the other party. It further compares with the anticipated call state of the incoming call, thus quickly verifying whether the incoming call comes from the originating number or not. In this demo, we demonstrate CEIVE installed on Android phones combating both basic and advanced caller ID spoofing attacks. 
    more » « less
  2. Virtual reality (VR) simulations have been adopted to provide controllable environments for running augmented reality (AR) experiments in diverse scenarios. However, insufficient research has explored the impact of AR applications on users, especially their attention patterns, and whether VR simulations accurately replicate these effects. In this work, we propose to analyze user attention patterns via eye tracking during XR usage. To represent applications that provide both helpful guidance and irrelevant information, we built a Sudoku Helper app that includes visual hints and potential distractions during the puzzle-solving period. We conducted two user studies with 19 different users each in AR and VR, in which we collected eye tracking data, conducted gaze-based analysis, and trained machine learning (ML) models to predict user attentional states and attention control ability. Our results show that the AR app had a statistically significant impact on enhancing attention by increasing the fixated proportion of time, while the VR app reduced fixated time and made the users less focused. Results indicate that there is a discrepancy between VR simulations and the AR experience. Our ML models achieve 99.3% and 96.3% accuracy in predicting user attention control ability in AR and VR, respectively. A noticeable performance drop when transferring models trained on one medium to the other further highlights the gap between the AR experience and the VR simulation of it. 
    more » « less
  3. Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes. 
    more » « less
  4. Pak, B (Ed.)
    In the presentation of architectural projects, physical models are still commonly used as a powerful and effective representation for building design and construction. On the other hand, Augmented Reality (AR) promises a wide range of possibilities in visualizing and interacting with 3D physical models, enhancing the modeling process. To benefit both, we present a novel medium for architectural representation: a marker-less AR powered physical architectural model that employs dynamic digital features. With AR enhancement, physical capabilities of a model could be extended without sacrificing its tangibility. We developed a framework to investigate the potential uses of 3D-model- based AR registration method and its augmentation on physical architectural models. To explore and demonstrate integration of physical and virtual models in AR, we designed this framework providing physical and virtual model interaction: a user can manipulate the physical model parts or control the visibility and dynamics of the virtual parts in AR. The framework consists of a LEGO model and an AR application on a hand-held device which was developed for this framework. The AR application utilizes a marker-less AR registration method and employs a 3D-model-based AR registration. A LEGO model was proposed as the physical 3D model in this registration process and machine learning training using Vuforia was utilized for the AR application to recognize the LEGO model from any point of view to register the virtual models in AR. The AR application also employs a user interface that allows user interaction with the virtual parts augmented on the physical ones. The working application was tested over its registration, physical and virtual interactions. Overall, the adoption of AR and its combination with physical models, and 3D-model-based AR registration allow for many advantages, which are discussed in the paper. 
    more » « less
  5. null (Ed.)
    Immersive technologies such as Virtual Reality (VR) and Augmented Reality (AR) have become the worldwide huge technological innovations impacting human life significantly. While the VR is an enclosed environment separated completely from the real world, AR allows users to merge the digital and physical worlds and enable the interaction between them. The wide usage of AR has led researchers to investigate its potential capability in several areas including STEM-related fields. Previous research shows that AR assisted courses tend to enhance students’ learning, spatial cognition, increase the students’ motivation and engagement in the learning process. In this study, the researchers have developed an AR application to assist students with spatial cognition and remote course engagement independently. The ARCADE tool enables students to not only visualize the isometric product from its orthogonal views, but it also provides short tutorial clips on how a specific feature was developed and what tools were used. The students can perform basic modifications on the 3D part in the ARCADE such as section views, details views, scale, rotate and explode the assembly views. Although this project is a work in progress, the preliminary pretest and posttest results show there is a significant improvement in students’ spatial cognition when the proposed tool is used to assist the course. 
    more » « less