skip to main content


Title: Iterative signal separation assisted energy disaggregation
Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy.  more » « less
Award ID(s):
1544687
PAR ID:
10073261
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2015 Sixth International Green and Sustainable Computing Conference (IGSC)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less
  2. Fine-grained monitoring of everyday appliances can provide better feedback to the consumers and motivate them to change behavior in order to reduce their energy usage. It also helps to detect abnormal power consumption events, long-term appliance malfunctions and potential safety concerns. Commercially available plug meters can be used for individual appliance monitoring but for an entire house, each such individual plug meters are expensive and tedious to setup. Alternative methods relying on Non-Intrusive Load Monitoring techniques help disaggregate electricity consumption data and learn about the individual appliance's power states and signatures. However fine-grained events (e.g., appliance malfunctions, abnormal power consumption, etc.) remain undetected and thus inferred contexts (such as safety hazards etc.) become invisible. In this work, we correlate an appliance's inherent acoustic noise with its energy consumption pattern individually and in presence of multiple appliances. We initially investigate classification techniques to establish the relationship between appliance power and acoustic states for efficient energy disaggregation and abnormal events detection. While promising, this approach fails when there are multiple appliances simultaneously in `ON' state. To further improve the accuracy of our energy disaggregation algorithm, we propose a probabilistic graphical model, based on a variation of Factorial Hidden Markov Model (FHMM) for multiple appliances energy disaggregation. We combine our probabilistic model with the appliances acoustic analytics and postulate a hybrid model for energy disaggregation. Our approach helps to improve the performance of energy disaggregation algorithms and provide critical insights on appliance longevity, abnormal power consumption, consumer behavior and their everyday lifestyle activities. We evaluate the performance of our proposed algorithms on real data traces and show that the fusion of acoustic and power signatures can successfully detect a number of appliances with 95% accuracy. 
    more » « less
  3. Non-Intrusive Load Monitoring (NILM) remains a critical issue in both commercial and residential energy management, with a key challenge being the requirement for individual appliance-specific deep learning models. These models often disregard the interconnected nature of loads and usage patterns, stemming from diverse user behavior. To address this, we introduce GraphNILM, an innovative end-to-end model that leverages graph neural networks to deliver appliance-level energy usage analysis for an entire home. In its initial phase, GraphNILM employs Gaussian random variables to depict the graph edges, later enhancing prediction accuracy by substituting these edges with observations of appliance interrelationships, stripping the individual load enery from the aggregated main energy all at one time, resulting in reduced memory usage, especially with more than three loads involved, thus presenting a time and space-efficient solution for real-world implementation. Comprehensive testing on popular NILM datasets confirms that our model outperforms existing benchmarks in both accuracy and memory consumption, suggesting its considerable promise for future deployment in edge devices. 
    more » « less
  4. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  5. null (Ed.)
    Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis. 
    more » « less