skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning from Non-Experts: An Interactive and Adaptive Learning Approach for Appliance Recognition in Smart Homes
With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency.  more » « less
Award ID(s):
1943035 1936131
PAR ID:
10317837
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
ISSN:
2378-962X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fine-grained monitoring of everyday appliances can provide better feedback to the consumers and motivate them to change behavior in order to reduce their energy usage. It also helps to detect abnormal power consumption events, long-term appliance malfunctions and potential safety concerns. Commercially available plug meters can be used for individual appliance monitoring but for an entire house, each such individual plug meters are expensive and tedious to setup. Alternative methods relying on Non-Intrusive Load Monitoring techniques help disaggregate electricity consumption data and learn about the individual appliance's power states and signatures. However fine-grained events (e.g., appliance malfunctions, abnormal power consumption, etc.) remain undetected and thus inferred contexts (such as safety hazards etc.) become invisible. In this work, we correlate an appliance's inherent acoustic noise with its energy consumption pattern individually and in presence of multiple appliances. We initially investigate classification techniques to establish the relationship between appliance power and acoustic states for efficient energy disaggregation and abnormal events detection. While promising, this approach fails when there are multiple appliances simultaneously in `ON' state. To further improve the accuracy of our energy disaggregation algorithm, we propose a probabilistic graphical model, based on a variation of Factorial Hidden Markov Model (FHMM) for multiple appliances energy disaggregation. We combine our probabilistic model with the appliances acoustic analytics and postulate a hybrid model for energy disaggregation. Our approach helps to improve the performance of energy disaggregation algorithms and provide critical insights on appliance longevity, abnormal power consumption, consumer behavior and their everyday lifestyle activities. We evaluate the performance of our proposed algorithms on real data traces and show that the fusion of acoustic and power signatures can successfully detect a number of appliances with 95% accuracy. 
    more » « less
  2. Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy. 
    more » « less
  3. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  4. null (Ed.)
    The residential sector accounts for a significant amount of water consumption in the United States. Understanding this water consumption behavior provides an opportunity for water savings, which are important for sustaining freshwater resources. In this study, we analyzed 1-second resolution smart water meter data from a 4-person household over one year as a demonstration. We disaggregated the data using derivative signals of the influent water flow rate at the water supply point of the home to identify start and end times of water events. k -means clustering, an unsupervised machine learning method, then categorized these water events based on information collected from the appliance/fixture end uses. The use of unsupervised learning reduces the training data requirements and lowers the barrier of implementation for the model. Using the water use profiles, we determined peak demand times and identified seasonal, weekly, and daily trends. These results provide insight into specific water conservation and efficiency opportunities within the household ( e.g. , reduced shower durations), including the reduction of water consumption during peak demand hours. The widespread implementation of this type of smart water metering and disaggregation system could improve water conservation and efficiency on a larger scale and reduce stress on local infrastructure systems and water resources. 
    more » « less
  5. Scheduling appliances is a challenging and interesting problem aimed at reducing energy consumption at a residential level. Previous work on appliance scheduling for smart homes assumes that user preferences have no uncertainty. In this paper, we study two approaches to address this problem when user preferences are uncertain. More specifically, we assume that user preferences in turning on or off a device are represented by Normal distributions. The first approach uses sample average approximation, a mathematical model, in computing a schedule. The second one relies on the fact that a scheduling problem could be viewed as a constraint satisfaction problem and uses depth-first search to identify a solution. We also conduct an experimental evaluation of the two approaches to investigate the scalability of each approach in different problem variants. We conclude by discussing computational challenges of our approaches and some possible directions for future work. 
    more » « less