skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Learning from Non-Experts: An Interactive and Adaptive Learning Approach for Appliance Recognition in Smart Homes
With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency.  more » « less
Award ID(s):
1943035 1936131
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis. 
    more » « less
  2. Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy. 
    more » « less
  3. null (Ed.)
    The residential sector accounts for a significant amount of water consumption in the United States. Understanding this water consumption behavior provides an opportunity for water savings, which are important for sustaining freshwater resources. In this study, we analyzed 1-second resolution smart water meter data from a 4-person household over one year as a demonstration. We disaggregated the data using derivative signals of the influent water flow rate at the water supply point of the home to identify start and end times of water events. k -means clustering, an unsupervised machine learning method, then categorized these water events based on information collected from the appliance/fixture end uses. The use of unsupervised learning reduces the training data requirements and lowers the barrier of implementation for the model. Using the water use profiles, we determined peak demand times and identified seasonal, weekly, and daily trends. These results provide insight into specific water conservation and efficiency opportunities within the household ( e.g. , reduced shower durations), including the reduction of water consumption during peak demand hours. The widespread implementation of this type of smart water metering and disaggregation system could improve water conservation and efficiency on a larger scale and reduce stress on local infrastructure systems and water resources. 
    more » « less
  4. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  5. Residential buildings constitute roughly one-fourth of the total energy use across the globe. Numerous studies have shown that providing an energy breakdown increases residents' awareness of energy use and can help save up to 15% energy. A significant amount of prior work has looked into source-separation techniques collectively called non-intrusive load monitoring (NILM), and most prior NILM research has leveraged high-frequency household aggregate data for energy breakdown. However, in practice most smart meters only sample hourly or once every 15 minutes, and existing NILM techniques show poor performance at such a low sampling rate. In this paper, we propose a TreeCNN model for energy breakdown on low frequency data. There are three key insights behind the design of our model: i) households consume energy with regular temporal patterns, which can be well captured by filters learned in CNNs; ii) tree structure isolates the pattern learning of each appliance that helps avoid magnitude variance problem, while preserves relationship among appliances; iii) tree structure enables the separation of known appliance from unknown ones, which de-noises the input time series for better appliance-level reconstruction. Our TreeCNN model outperformed seven existing baselines on a public benchmark dataset with lower estimation error and higher accuracy on detecting the active states of appliances. 
    more » « less