skip to main content


Title: Leveraging RF Power for Intelligent Tag Networks
A novel framework and related methodologies are described to leverage RF power for building intelligent and battery-free devices with communication and computation capabilities. These passive devices are envisioned to make significant impact for the popular vision of smart dust due to extreme low power operation. The communication framework relies on tag-to-tag backscattering with very limited energy resources. The computing framework relies on a novel AC computing methodology that facilitates local data processing with an order of magnitude less power consumption. These enabling technologies, as described in this paper, revitalize the concept of smart dust with significant impact on various application domains such as smart spaces, implantable devices, and environmental/structural monitoring.  more » « less
Award ID(s):
1646318
NSF-PAR ID:
10073298
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Great Lakes Symposium on VLSI
Page Range / eLocation ID:
329 to 334
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  2. Abstract

    Supercapacitors are a new brand of high‐performance nanoengineered devices that match the high capacity of batteries for electric energy storage with the ability of dry capacitors for ultra‐fast charging or discharging rates. Thus, supercapacitors are capable of simultaneously providing the high energy‐density and high power‐density, demanded in a plethora of biosensors and portable electronic devices. In this review, a variety of nanomaterials investigated for possible applications in novel supercapacitors have been evaluated including different carbon nanoforms, metal oxides or hydroxides, chalcogenides, carbides and phosphates, as well as organic redox species, conductive polymers, metal‐organic frameworks, MXenes and others. Different strategies for boosting volumetric capacitance, power density and charge or discharge cycling stability of micro‐supercapacitors (MSCs) designed from these materials have been reviewed and their application potential assessed. Special attention has been given to micro‐supercapacitor's designs that are suitable for miniaturization and integration with flexible microcircuits for wearable and implantable biomedical devices, remotely rechargeable sensors, microprocessor‐controlled data processing chips, biomorphic computing, smart phone communication, military, automotive applications and emerging technologies. The different strategies applied for MSCs design and fabrication, including femto‐laser writing, photolithography, screen printing, stamping, inkjet printing, mask patterning and others, have been assessed. The exciting future perspectives of MSCs have been discussed.

     
    more » « less
  3. Despite the phenomenal advances in the computational power and functionality of electronic systems, human-machine interaction has largely been limited to simple control panels, keyboard, mouse and display. Consequently, these systems either rely critically on close human guidance or operate almost independently from the user. An exemplar technology integrated tightly into our lives is the smartphone. However, the term “smart” is a misnomer, since it has fundamentally no intelligence to understand its user. The users still have to type, touch or speak (to some extent) to express their intentions in a form accessible to the phone. Hence, intelligent decision making is still almost entirely a human task. A life-changing experience can be achieved by transforming machines from passive tools to agents capable of understanding human physiology and what their user wants [1]. This can advance human capabilities in unimagined ways by building a symbiotic relationship to solve real world problems cooperatively. One of the high-impact application areas of this approach is assistive internet of things (IoT) technologies for physically challenged individuals. The Annual World Report on Disability reveals that 15% of the world population lives with disability, while 110 to 190 million of these people have difficulty in functioning [1]. Quality of life for this population can improve significantly if we can provide accessibility to smart devices, which provide sensory inputs and assist with everyday tasks. This work demonstrates that smart IoT devices open up the possibility to alleviate the burden on the user by equipping everyday objects, such as a wheelchair, with decision-making capabilities. Moving part of the intelligent decision making to smart IoT objects requires a robust mechanism for human-machine communication (HMC). To address this challenge, we present examples of multimodal HMC mechanisms, where the modalities are electroencephalogram (EEG), speech commands, and motion sensing. We also introduce an IoT co-simulation framework developed using a network simulator (OMNeT++) and a robot simulation platform Virtual Robot Experimentation Platform (V-REP). We show how this framework is used to evaluate the effectiveness of different HMC strategies using automated indoor navigation as a driver application. 
    more » « less
  4. This work is a survey of current trends in applications of PMUs. PMUs have the potential to solve major problems in the areas of power system estimation, protection, and stability. A variety of methods are being used for these purposes, including statistical techniques, mathematical transformations, probability, and AI. The results produced by the techniques reviewed in this work are promising, but there is work to be performed in the context of implementation and standardization. As the smart grid initiative continues to advance, the number of intelligent devices monitoring the power grid continues to increase. PMUs are at the center of this initiative, and as a result, each year more PMUs are deployed across the grid. Since their introduction, myriad solutions based on PMU-technology have been suggested. The high sampling rates and synchronized measurements provided by PMUs are expected to drive significant advancements across multiple fields, such as the protection, estimation, and control of the power grid. This work offers a review of contemporary research trends and applications of PMU technology. Most solutions presented in this work were published in the last five years, and techniques showing potential for significant impact are highlighted in greater detail. Being a relatively new technology, there are several issues that must be addressed before PMU-based solutions can be successfully implemented. This survey found that key areas where improvements are needed include the establishment of PMU-observability, data processing algorithms, the handling of heterogeneous sampling rates, and the minimization of the investment in infrastructure for PMU communication. Solutions based on Bayesian estimation, as well as those having a distributed architectures, show great promise. The material presented in this document is tailored to both new researchers entering this field and experienced researchers wishing to become acquainted with emerging trends. 
    more » « less
  5. This paper considers the single source shortest path (SSSP) problem, which is the key for many applications such as navigation, mapping, routing, and social networking. Existing SSSP algorithms are designed mostly for shared-memory systems. Nevertheless, with the prevalence of diverse smart devices like drones, there is a growing interest in deploying SSSP algorithms over distributed computing systems so that they can run efficiently onboard of smart devices via Mobile Ad Hoc Computing or at the network edges via Mobile Edge Computing. In this paper, we introduce a communication-efficient ∆-stepping algorithm for distributed computing systems. The proposed algorithm is featured by 1) a message coordination architecture for reducing message exchanges between workers, 2) a pruning technique for reducing redundant computations, and 3) an aggregation technique for further reducing message exchanges when communication delay is significant. Theoretical analyses and experimental studies on real-world graph datasets demonstrate the promising performance of proposed algorithm. 
    more » « less