skip to main content


Title: Shape memory polymers for self‐folding via compression of thermoplastic sheets
ABSTRACT

We report a simple method to strain, and thereby program, shape memory polymers by compressing planar thermoplastic sheets. This work is motivated by the limited number of commercially available prestrained polymer sheets; current examples include: Shrinky Dinks, Eastman's Embrace, and polyurethane shrink films. However, these commercial specimens limit the sample thickness, polymer composition, and amount of stored strain. We show here that melt pressing can strain thermoplastic sheets over a range of thicknesses and polymer chemical compositions. After pressing (and thus, straining), the polymer sheets can self‐fold out‐of‐plane into complex geometries using two different actuation mechanisms, both of which locally release strain stored in the polymer. Three‐dimensional geometries are attained experimentally with both thick (~12 mm) and thin (~1 mm) strained polymer samples with a range of polymer compositions. Digital image correlation maps the strain profile within the melt pressed samples while a Mooney–Rivlin and geometric model predicts the average strain and folding response of the samples, respectively. The model predictions agree well with experimental results. These findings enable self‐folding with a broader design space such as polymer chemical composition, sample thickness, strain within the sample, and external stimulus. Techniques presented here should translate to other thermoplastic polymers, thus making this technique a viable tool to increase the available pool of materials available for self‐folding devices. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 46889.

 
more » « less
NSF-PAR ID:
10073605
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
135
Issue:
47
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering. 
    more » « less
  2. null (Ed.)
    Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami. 
    more » « less
  3. ABSTRACT

    Amphiphilic self‐folding random copolymers exhibit different solution behaviors depending on the identity of the hydrophobic/hydrophilic units. Herein, it is demonstrated that changing the hydrophilic unit from poly(ethylene glycol) to the sugar trehalose causes increased discrepancy in the polarity difference with a fluorinated hydrophobic segment and changes the aggregation state of the polymer in water. The PEG‐fluorinated and trehalose/PEG‐fluorinated amphiphilic random copolymers were the most efficient at encapsulating a fluorinated agrochemical. The small‐molecule agrochemical exerts a strong influence on the self‐assembly of the polymers, demonstrating that fluorous interactions result in not only intramolecular self‐folding behavior but also intermolecular polymer association to form well‐defined nanoparticles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 352–359

     
    more » « less
  4. Secondary ion mass spectrometry techniques are used to study trace elements in organic samples where matrix compositions vary spatially. This study was conducted to develop calibrations for lithium content and lithium isotope measurements in kerogen. Known concentrations of Li ions (6Li and7Li) were implanted into organic polymers, with a range of H/C and O/C ratios similar to kerogen, along with glassy carbon (SPI Glas‐22) and silicate glass (NIST SRM 612). Results show that Li content calibration factors (K*) are similar for carbonaceous samples when analysed using a 5 kV secondary ion accelerating voltage. Using a 9 kV secondary ion accelerating voltage,K* factors are negatively correlated with the sample O content, changing ~ 30% between 0 and 15 oxygen atomic %. Thus, to avoid the matrix effect related to O content, using a 5 kV secondary ion accelerating voltage is best for quantification of Li contents based on7Li+/12C+ratios. Under these analytical conditions, Li ppm (atomic) = (132 (± 8) × 7Li+/12C+) × 12C atom fraction of the sample measured. Lithium isotope ratio measurements of SPI Glas‐22 and NIST SRM 612 are within uncertainty; however, the organic polymer samples as a group show a 10‰ higher δ7Li than NIST SRM 612.

     
    more » « less
  5. ABSTRACT

    Carbohydrates are the fundamental building blocks of many natural polymers, their wide bioavailability, high chemical functionality, and stereochemical diversity make them attractive starting materials for the development of new synthetic polymers. In this work, one such carbohydrate,d‐glucopyranoside, was utilized to produce a hydrophobic five‐membered cyclic carbonate monomer to afford sugar‐based amphiphilic copolymers and block copolymers via organocatalyzed ring‐opening polymerizations with 4‐methylbenzyl alcohol and methoxy poly(ethylene glycol) as initiator and macroinitiator, respectively. To modulate the amphiphilicities of these polymers acidic benzylidene cleavage reactions were performed to deprotect the sugar repeat units and present hydrophilic hydroxyl side chain groups. Assembly of the polymers under aqueous conditions revealed interesting morphological differences, based on the polymer molar mass and repeat unit composition. The initial polymers, prior to the removal of the benzylidenes, underwent a morphological change from micelles to vesicles as the sugar block length was increased, causing a decrease in the hydrophilic–hydrophobic ratio. Deprotection of the sugar block increased the hydrophilicity and gave micellar morphologies. This tunable polymeric platform holds promise for the production of advanced materials for implementation in a diverse range of applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 432–440

     
    more » « less