skip to main content


Title: Navajo Nation snowpack variability from 1985-2014 and implications for water resources management
Abstract: In the arid Southwest, snowpack in mountains plays an essential role in supplying surface waterresources. Water managers from the Navajo Nation monitor snowpack at nine snow survey stations located in the Chuska Mountains and Defiance Plateau in northern Arizona and New Mexico. We characterize these snowpack data for the period 1985-2014 and evaluate the efficacy of snowpack data collection efforts. Peak snow water equivalent occurs in early to mid-March depending on elevation. Variability in snowpack levels correlates highly among all sites (r > 0.64), but higher elevation sites in the Chuska Mountains correlate more strongly with one another compared to lower elevation sites and vice versa. Northern sites also correlate well with each other. A principal component analysis is used to create a weighted average time series of year-to-year peak snowpack variability. The first principal component showed no trend in increasing or decreasing Navajo Nation snowpack. Results from this research will provide the Navajo Nation Department of Water Resources information to help determine if any snow survey sites in the Chuska Mountains are redundant and can be discontinued to save time and money, while still providing snowpack information needed by the Navajo Nation. This summary of snowpack patterns, variability, and trends in the Chuska Mountains and Defiance Plateau will help the Navajo Nation to understand how snowpack and water resources respond to climate change and climate variability.  more » « less
Award ID(s):
1747709
NSF-PAR ID:
10073932
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of contemporary water research and education
Issue:
163
ISSN:
1936-704X
Page Range / eLocation ID:
124-138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Declines in winter snowpack have increased the severity of summer droughts in western U.S. forests, with the potential to also impact soil available nitrogen (N). To understand how snowpack controls spatiotemporal N availability, we examined seasonal N dynamics across elevation, aspect, and topographic position (hollow vs. slope) in a forested watershed in the northern Rocky Mountains. As expected, peak snow‐water equivalent (SWE) was generally greater at higher elevations and on north‐facing aspects. However, the effects of topographic position and snowdrift led to variability in snow accumulation at smaller spatial scales. Spatial patterns of the snowpack, in turn, influenced soil moisture and temperature, with greater SWE leading to generally higher soil moisture levels during the summer and smaller temperature fluctuations throughout the year. Wetter conditions in spring or fall generally supported greater inorganic N pools, but at the driest locations (low‐elevation slope), pulses of N mineralization in summer may have played important roles in overall N dynamics. More importantly, soil moisture during the summer appeared to be more influenced by antecedent snowpack from the previous year than by current‐year summer rain. Subsequently, N mineralization under snowpack may be strongly influenced by soil moisture and temperature conditions from the previous fall, before snowpack accumulation. Together, our results indicate that snowpack strongly influences N dynamics beyond the current growing season in western coniferous forests through mediation of soil moisture and temperature, and suggest that further decline in winter snowpack may affect these forests through constraints in both water and N availability.

     
    more » « less
  2. Abstract. Cold content is a measure of a snowpack's energy deficit and is a linear function of snowpack mass and temperature. Positive energy fluxes into a snowpack must first satisfy the remaining energy deficit before snowmelt runoff begins, making cold content a key component of the snowpack energy budget. Nevertheless, uncertainty surrounds cold content development and its relationship to snowmelt, likely because of a lack of direct observations. This work clarifies the controls exerted by air temperature, precipitation, and negative energy fluxes on cold content development and quantifies the relationship between cold content and snowmelt timing and rate at daily to seasonal timescales. The analysis presented herein leverages a unique long-term snow pit record along with validated output from the SNOWPACK model forced with 23 water years (1991–2013) of quality controlled, infilled hourly meteorological data from an alpine and subalpine site in the Colorado Rocky Mountains. The results indicated that precipitation exerted the primary control on cold content development at our two sites with snowfall responsible for 84.4 and 73.0% of simulated daily gains in the alpine and subalpine, respectively. A negative surface energy balance – primarily driven by sublimation and longwave radiation emission from the snowpack – during days without snowfall provided a secondary pathway for cold content development, and was responsible for the remaining 15.6 and 27.0% of cold content additions. Non-zero cold content values were associated with reduced snowmelt rates and delayed snowmelt onset at daily to sub-seasonal timescales, while peak cold content magnitude had no significant relationship to seasonal snowmelt timing. These results suggest that the information provided by cold content observations and/or simulations is most relevant to snowmelt processes at shorter timescales, and may help water resource managers to better predict melt onset and rate.

     
    more » « less
  3. Abstract. Seasonal snowpack is an essential component in the hydrological cycle and plays a significant role in supplying water resources to downstream users. Yet the snow water equivalent (SWE) in seasonal snowpacks, and its space–time variation, remains highly uncertain, especially over mountainous areas with complex terrain and sparse observations, such as in High Mountain Asia (HMA). In this work, we assessed the spatiotemporal distribution of seasonal SWE, obtained from a new 18-year HMA Snow Reanalysis (HMASR) dataset, as part of the recent NASA High Mountain Asia Team (HiMAT) effort. A Bayesian snow reanalysis scheme previously developed to assimilate satellite-derived fractional snow-covered area (fSCA) products from Landsat and MODIS platforms has been applied to develop the HMASR dataset (at a spatial resolution of 16 arcsec (∼500 m) and daily temporal resolution) over the joint Landsat–MODIS period covering water years (WYs) 2000–2017. Based on the results, the HMA-wide total SWE volume is found to be around163 km3 on average and ranges from 114 km3 (WY2001) to 227 km3 (WY2005) when assessed over 18 WYs. The most abundant snowpacks are found in the northwestern basins (e.g., Indus, Syr Darya and Amu Darya) that are mainly affected by the westerlies, accounting for around 66 % of total seasonal SWE volume. Seasonal snowpack in HMA is depicted by snow accumulating through October to March and April, typically peaking around April and depleting in July–October, with variations across basins and WYs. When examining the elevational distribution over the HMA domain, seasonal SWE volume peaks at mid-elevations (around 3500 m), with over 50 % of the volume stored above 3500 m. Above-average amounts of precipitation causes significant overall increase in SWE volumes across all elevations, while an increase in air temperature (∼1.5 K) from cooler to normal conditions leads to an redistribution in snow storage from lower elevations to mid-elevations. This work brings new insight into understanding the climatology and variability of seasonal snowpack over HMA, with the regional snow reanalysis constrained by remote-sensing data, providing a new reference dataset for future studies of seasonal snow and how it contributes to the water cycle and climate over the HMA region. 
    more » « less
  4. Abstract

    Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western United States to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow- and deep-snow sites. The median Nash–Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE valuesdmaxwere reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors that would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern United States, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high-elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for nonephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.

     
    more » « less
  5. Abstract

    The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region.

    Significance Statement

    The purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding.

     
    more » « less